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Abstract
We introduce a uniform representation of general objects that captures the regu-

larities with respect to their structure. It allows a representation of a general class of
objects including geometric patterns and images in a sparse, modular, hierarchical,
and recursive manner. The representation can exploit any computable regularity in
objects to compactly describe them, while also being capable of representing random
objects as raw data. A set of rules uniformly dictates the interpretation of the rep-
resentation into raw signal, which makes it possible to ask what pattern a given raw
signal contains. Also, it allows simple separation of the information that we wish to
ignore from that which we measure, by using a set of maps to delineate the a priori
parts of the objects, leaving only the information in the structure.

Using the representation, we introduce a measure of information in general objects
relative to structures defined by the set of maps. We point out that the common pre-
scription of encoding objects by strings to use Kolmogorov complexity is meaningless
when, as often is the case, the encoding is not specified in any way other than that it
exists. Noting this, we define the measure directly in terms of the structures of the
spaces in which the objects reside. As a result, the measure is defined relative to a set
of maps that characterize the structures. Though it does not depend on Kolmogorov
complexity, it raises a question of their relationship, as the class of applicable objects
includes strings. It turns out that the measure is equivalent to Kolmogorov complexity
when it is defined relative to the maps characterizing the structure of natural num-
bers. Thus, the formulation gives the larger class of objects a meaningful measure of
information that generalizes Kolmogorov complexity.

1 Introduction
What is a pattern? There does not seem to be a generally accepted mathematical definition.
Intuitively, a pattern is something simpler than it is apparent. For instance, a repetition of
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a short substring in a longer string is a pattern: the longer string is simpler, or contains
less information, than most other strings of the same length. Here, we see a comparison
between the apparent size (length in the literal representation) and the “real” amount of
information. Formally, this can be stated in terms of Kolmogorov complexity[1, 2, 9, 13,
14] of the string, which is roughly defined as the length of the shortest input to a universal
Turing machine that produces the string. A string can be said to have a pattern if its
Kolmogorov complexity is much smaller than its length: strings that can be effectively
described in a significantly shorter description than their length have patterns. Our goal in
this paper is to formalize this notion in the domain of more general objects than strings.

For instance, consider bitmap images. Ordinary images are much orderly than what is
allowed by their representation as an array of colors; if we take a random bitmap out of
all that can be represented as a bitmap, it is almost always a white noise, rather than what
we would consider an ordinary image. This is similar to the string case where most strings
of a given length are random ones that do not have a shorter description than the literal
one. What is the corresponding “effective description” of images? Intuitively, it should be
a way to describe the image in which ordinary images can be represented more concisely
than noise images.

A Turing machine that produces a bitmap does not suffice because, unlike the case of
strings, where all strings can be represented precisely as they are, the bitmaps are only
approximations of what we consider to be real images: Pixels are artifacts of arbitrary
approximation; and we naturally consider bitmaps of various resolutions as the same, if
they show the same scene. There would be no problem if it were the case that all important
features of an image are independent of the choice of pixelation. However, this is clearly
not so: even a notion as simple as that of a line is not so simple to define on bitmaps,
especially in such a way a line in one resolution can be converted into a line in another
resolution.

Infinite resolution bitmaps, or functions on an image domain that takes values in the
color space, seem to be good enough for the literal representation. But then, the objects
appearing there are continuous, infinite entities and thus cannot easily be described effec-
tively as, for instance, an output of a Turing machine. Yet intuition tells us that some of
these infinite entities contain only finite information, as the extreme cases of “geometric”
visual patterns shown in Figure 1.

1.1 Kolmogorov Complexity Covers All?
But surely, one might say, Kolmogorov complexity already covers any domain, since Com-
puter Science teaches us that information can be encoded by strings. That is, we can first
fix some standard enumeration of the objects, establishing a one-to-one correspondence
between the objects and strings; then we can define the complexity of an object to be the
Kolmogorov complexity of the corresponding string. That seems to be where such an in-
quiry usually stops, content with the notion that essentially we only need to investigate
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Figure 1: Visual patterns.

strings.
However, we immediately encounter a few problems.
First, for a class of objects (such as subsets of a Euclidean space) that has a larger

cardinality than the set of all strings, we cannot encode all objects by strings; thus we
need to give up the one-to-one correspondence. We must either encode only some of the
objects, encode (perhaps an infinite number of) multiple objects by each string, or employ
some combination of the two approaches. The choice amounts to knowing what to ignore,
whether it is some (even most) of the objects that are not encoded, or the difference between
the objects that are encoded into the same string. How should we make this choice?

More fundamentally, the resulting measure has little meaning without actually specify-
ing the encoding. Let O and S be the sets of objects and strings, respectively, and K(s) the
Kolmogorov complexity of a string s. With an encoding f : O→ S, we might call K( f (x))
the complexity of object x. However, if we do not have some good reason to take a par-
ticular f , we can equally use the encoding p ◦ f with an arbitrary permutation p : S → S.
This observation renders the definition meaningless without f explicitly specified. So the
question is: what is the encoding that gives the complexity some meaning? How can we
avoid falling into this trap of arbitrariness? It is certainly not enough just to say that it can
be encoded.

With strings, we can choose the identity map as f , which gives K( f (x)) as much mean-
ing as K(s). In other cases, however, we need to specify f , with at least some justification.
If we insist encoding objects into strings, we need to define a concrete encoding for each
class of objects.

Another problem of measuring the information solely through Kolmogorov complexity
is that we cannot easily ignore the part of information we do not care. For instance, we
may try to represent a point in the Euclidean plane by identifying the space with R2, i.e.,
by a pair of real coordinates, and then encoding them by strings. However, a single real
number can contain an arbitrarily large amount of information. Thus, in this representation,
a single point can have an arbitrarily large information when encoded by a string. That is
certainly not what we want here. Thus, an important part of the encoding is specifying the
part of the information we wish to ignore. But we cannot simply delete such information
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in the encoding process, since it may be needed to identify and measure the regularities in
the structure later. If we insist that the computation be carried out strictly in the domain of
strings, f ’s output must contain all the information in the points. But after the information
has been converted into strings, how do we specify which part of the information should
be ignored?

It would be much better if we can define the notion of computation, such as compres-
sion and pattern finding, directly in terms of the objects we deal with. What we offer in this
paper is a meta definition of f for multiple classes of objects by specifying how to embed
computations in larger spaces. Central to the formalism is the representation of objects that
offers the means to specify the information in individual elements that should be ignored,
while using that very information to find the structures, in which we wish to measure the
amount of information.

Thus, the central problem is that of encoding, or representation, of objects. The paradigm
to measure information through computation is the same; the difference is where the com-
putation takes place. This question of encoding seems to have suffered a neglect which, in
our belief, has prevented us from formulating a notion of information in objects that have
not already been encoded in a convenient way. We discuss this further in Section 7.

1.2 Motivation
Our motivation for asking this question stems from the desire to model perception. For
perception, there needs to be a large amount of prior knowledge stored in the perceiver,
because perception is an inherently ill-posed problem. Perception is a process in which
the configuration of the signal source is recovered from a signal, as in recovering a three-
dimensional scene from an image.

The problem is that, given the signal, there are usually infinitely many possible source
configurations. Without a preference of possible source configuration on the side of the
perceiver, there is no reason to choose one possibility over another. For instance, our
visual system has a great capability to organize the visual signal into interpretable shapes,
like making sense of the famous Dalmatian photo by R. C. James in [5]. To model such a
system, it is not enough to know what the possible configurations of the signal source are;
we need to know in advance how likely we are going to encounter each of them.

However, even putting aside the problem of estimating the probabilities, just storing and
retrieving the data is impossible unless we have a very good way to compress the data; for
instance, if we store the possible shape of surfaces as an array of 10 possible heights at each
of 10×10 positions, the number of possible surfaces would be 10100. The way this problem
has been dealt with is by estimating the probabilities by looking at specific characteristics
of the possible surface. For instance, the surface smoothness can be computed from a given
description of the surface; we can then decide, for instance, that the smoother the surface
is, the higher the probability. Indeed, the area of computer vision and pattern recognition
is full of such heuristics. Even when machine learning techniques are used, the variables to
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be learned must be carefully chosen because we cannot simply learn all possible surfaces.
Our desire to have a measure of information originates from the wish to have a principle

for automatically deciding which quantity to look at and which combinations of variables
to learn, because we consider it reasonable for a perceiving entity to look first for simpler
patterns in the signal, as well as because of the demand of storage efficiency. That is, if we
have a measure of simplicity of general visual objects, we can say, for instance, that the
probability is proportional to the simplicity, or use machine learning techniques to learn
the probabilities that such simpler patterns appear.

In more general terms, this is a problem of inductive inference and modeling: we in-
ductively seek a model of the world that best explains the data. There are theories that treat
such a problem, and among them are ones with the spirit we describe above. For instance,
the Minimum Description Length (MDL) principle[11] advocates Occam’s Razor. Among
models that equally fit the data, it chooses the one that is the “simplest” in the sense that
it allows for a shorter description of the data. However, crucially missing from this the-
ory is the problem of representation. The MDL theory only deals with strings as the data
and does not say how the objects should be described by strings. It is a good principle
for people trying to deal with individual problems they understand; but when it comes to
dealing with general objects, it lacks the mathematical concreteness needed to program the
principle itself into machines.

Also, as perceiving entities, we seem to have more interest in the finite part of the data.
One may even say that we can only perceive the finite information out of any infinitely rich
source of information, on the basis that our capacity of representation is presumably finite.
For instance, if we see a white noise image, we do not perceive the amount of information
that can be encoded in such an image. Instead, we glean the information that we can; we
might just note that it is a white noise, or if it is a video we would recognize that the noise
is constantly changing, and so on. If we see the three images in Figure 2, which are the
same pattern with different noise added, we do not discriminate among them. Even though
as raw bitmaps they are quite different, we perceive almost nothing about the noise except
for its presence; we just recognize the pattern of the lines as the same and notice that there
are some noise. Thus, to model the perception, we need a way to recognize the part of an
infinite signal that represents finite but useful information. This is why we are especially
interested in inherently finite structures whose literal manifestations are infinite.

The human visual system seems to have “the ability to impose organization on sen-
sory data—to discover regularity, coherence, continuity, etc., on many levels,” which is
“apart from both the perception of tri-dimensionality and from the recognition of famil-
iar objects[15].” We agree that such structure and organization that appears at every level
is the key to modeling vision and perception in general. One purpose of this work is to
provide a language to express the perceptual organization that enables us to implement the
ability to impose it on the data.
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Figure 2: Visual patterns with noise.

1.3 Desiderata
What we seek is a description, or representation, of general objects with the following
properties:

I. General: It can represent a general class of objects and all objects in the class, includ-
ing a part of the descriptions themselves, allowing hierarchical description.

II. Uniform: It represents the objects in a uniform way by simple rules.

III. Reflect complexity: The intuitive complexity, or the amount of information in the
object, corresponds to the complexity of the description. In particular, intuitively
finite object has a finite description.

IV. Grounded: There is a set of rules that applies to the whole class of objects, not de-
pending on the instance of the object, dictating how the described objects are related
to the raw signal.

In the case of strings, the literal representation satisfies I and II: representing a string
as a string is obviously general enough to represent any string, and the representation is
uniform for any string. Fixing a universal Turing machine U, one can consider a program
p for U as a description of a string x if p causes the machine to halt after writing out
the string x on the tape. Intuitively simple string would have a shorter program. Also,
describing strings by other strings automatically satisfy the describability of descriptions
and the groundedness. Thus this description would satisfy all of the desiderata.

In the case of images, we can think of a function on a rectangle in R2 as the literal
representation, satisfying the desiderata I and II. But we do not know of a representation
that satisfies all of the desiderata. Perhaps the closest is the page description languages like
PostScript, possibly modified to allow infinite precision. However, it has too many primi-
tives to be convenient for mathematical treatment. Also, the uniformity and simplicity of
the rules of description is important not only for the sake of mathematical convenience,
but also because we aim eventually to develop a way of automatically extract such descrip-
tion from the literal description, or the signal. More crucially, PostScript is not general
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enough: its class of objects is limited to two dimensional pages. The applicability to more
general objects than just images is important because we would like to find a description
that reflects the structure within more abstract data than a two-dimensional page, especially
the description itself. For instance, if we have a way to describe circles by center points
and radii, we would have a three-dimensional space of circles. We would like to use the
same uniform description to describe a group of the 3D points corresponding to the circles.
Thus, allowing “describing the description” is crucial in order to allow efficient description
of repetitive, hierarchical, and more general structures.

The groundedness requirement is needed to treat general structures in a uniform way.
When we say that some data represents some object, we implicitly assume a set of rules
for data interpretation and manipulation. It is this set of rules that gives the structure
to the object. It is like a machine with knobs and buttons to control it: knowing their
settings may be enough to determine the state of the machine; but to describe the effect and
interaction of the machine with the environment and other machines, we need more than
the internal parameters. If the rules are ad hoc, varying from one instance of representation
to another, it would be impossible to formulate the notion of general structures and describe
the manipulation of and interaction between such structures.

All the desiderata are related to each other. In particular, we emphasize the following:
it is not enough that the simple objects correspond to less data (III); the correspondence
must be obtainable from the representation (IV) in a uniform (II) way that applies to the
whole general class (I) of objects. For instance, we can say a pair of a point and a real
number represents a circle by regarding them as the center and the radius. Or we can
say that the pair represents a line by regarding it as a point the line goes through and its
angular direction. But for the representation to cover both cases, one must also include in
the representation some data specifying which case it is for each object. Such data quickly
adds up when one wants to represent various shapes; so when we say that general shapes
are described in a representation, it has not only to cover all the shapes but also include
the necessary data in a way any shape represented can be converted into a common, literal
representation.

1.4 Related Work
The General Pattern Theory[6, 7, 8] is an effort to provide an algebraic framework for
describing patterns as structures. It defines a vocabulary which is manipulated to cast the
concept of pattern in a precise algebraic language. While it has detailed algebraic and
statistical theories with many examples, we only discuss here the part that deals with the
representation of patterns. The representation is based on graphs. A graph is fixed; each of
its node can be assigned one of generators, whose set is predetermined; a restriction as to
which combination of generators can be assigned to the nodes is defined as a set of pairwise
restrictions corresponding to the edges of the graph. There are numerous examples in the
literature showing that this representation can be used to represent many classes of objects.
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The Syntactic Pattern Recognition[4] also represents patterns in a way that explicitly
handles the interrelationships between the parts that make up the whole of the object, and
use the explicit structure in patterns to recognize them. The representation is either by a
formal language or a graph.

Neither of the representations used in the two formalisms is satisfactory for us. The
crucial problem is that they are not grounded in the sense above. They are not uniform
from a class of objects to another; thus, although we can talk about the information in
objects in each class, there is no way to compare them across the classes. They are general
in the sense one can adopt them to many different classes of objects, but they are not
general enough to represent all of the classes in the same uniform way. They cannot be
used, for instance, to define what patterns are, because there is no prescribed way for the
representation to be connected to general enough class of objects. There is no formal way
to give a raw data and ask what pattern it might form.

Besides the Kolmogorov complexity we already mentioned, there are many notions of
the complexity of objects. Most of them are concerned about the complexity of objects that
do not include what we deal with in this paper. Also, note that what we define in this paper
is a measure of information like Kolmogorov complexity and Shannon information[12],
rather than a measure of complexity such as the computational complexity. We refer the
reader to the appendix of [3] for an overview of formulations of complexity with an exten-
sive bibliography.

1.5 Overview of the Representation
In this paper, we introduce a representation that fulfills all the desiderata above. Here, we
give an overview of its definition and some of its properties.

We assume that the objects are given a priori as subsets of some sets. Those that can
be thought of in this way forms a very general class that seems to include most, if not all,
objects we might deal with. For example, we can think of a binary string s = s0s1 · · · sn as
a subset {(i, si) | i = 0, · · · , n} of N × {0, 1}; an image can be thought of as a subset of the
product of the image plane and the color space, i.e., the graph of the image function on the
image plane. A physical object like a bicycle or an automobile, at one level of abstraction,
can be thought of as a subset of E3 × M, where E3 is the 3D Euclidean space and M the
set of materials, e.g., glass, iron, rubber, etc.; the subset consists of (x,m(x)), with m(x) the
material that occupies the point x in E3. We call this representation of objects as subsets
the ground representation; it serves as a signal-level, literal representation. It is simple to
represent something in this way; we can then ask the amount of information therein.

The ground representation is an abstraction of the kind of data representation that we
call the dense representation, which includes strings, bitmaps, and other raw data. It cor-
responds to representing a string as itself. One property of dense representation is that the
presence of regularities does not affect it. For instance, any image can be represented as a
bitmap in exactly the same manner, whether it is a regular image or a white noise. Another
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type of representation, which we call the sparse representation, utilizes regularities in the
object to describe it. In the image example, if it is an image of geometric objects, it should
take very little data to describe it, at least in principle; a circle, for instance, can be repre-
sented just by specifying its center point and radius. The same kind of description cannot
be used to describe a white noise.

An important feature of the representation proposed in this paper is that it can interpo-
late between the dense and sparse representation, so that it can take advantage of regularity
in the data while also being capable of representing any, even random, data. This is similar
to using an input to a Turing machine to represent strings.

As the vocabulary to describe the regularities in such objects, we use the maps that
characterize the space in which the objects are included as subsets. Maps characterize the
structure of spaces in the following sense. Any two sets with the same cardinality are the
same sets in absence of other characteristics. For instance, R is the same set in this sense
as R2, i.e., there exists a one-to-one map between them, if we disregard the structures such
as the topology, the vector space structure, the metric structure, the order, and the algebraic
structure. These structures can be characterized by maps. For instance, the metric structure
is defined by the distance map that gives the distance between two elements of the set; the
order is given by a predicate on a pair of elements that returns true if the first element is
less than the second. The two sets are different when we consider the structures because
the one-to-one map does not commute with the maps that define the structures.

Using such structure maps to describe regularity, objects with regularities can be repre-
sented through sparse parameters in the proposed representation. For a given object, there
can be many different ways of representing it, just as there can be any number of inputs
to a Turing machine producing the same string. Importantly, there is a prescribed way to
connect the description to the ground representation; thus, the representation is grounded.
While taking structures into account so that regular objects can be represented as such, it
automatically provides an interpretation of each represented object into the signal level. In
other words, the relationship between the parameters and the data is part of the represen-
tation. Thus, we can give our data in the ground representation and then ask what sparser,
more structured representation is possible.

Let us be slightly more concrete. In the proposed representation, we take a number
of sets and maps between them (that are to be composed by the structure maps), which
we call a diagram. Then we call an assignment of a subset to each set in the diagram its
cross section. A cross section must satisfy a certain constraints, because of which we can
uniquely determine all the subsets by specifying only a partial cross section, which assigns
subsets to only some of the sets in the diagram. If one of the subsets coincides with the
ground representation of the object in question, we say that it is represented by the diagram
and the partial cross section.

The maps define the structures we take into consideration, which determine the reg-
ularities, which in turn allow more concise description of the object than the literal one.
Since the representation by diagrams and cross sections is explicitly in terms of the maps
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in the diagram, it is apparent from the diagram exactly what structure is taken into account.
Some of the properties of the representation are as follows. It is:

i) Sparse: Unlike dense representations such as bitmap, it is capable of representing
objects by a combination of their essential structure and instance-specific parameters.
The diagram expresses the essential structure while the partial cross section represents
the parameters. Implementation-dependent approximation of representation only af-
fects the parameters and thus can be separated from the structure. The sparseness
also makes it flexible and easy to manipulate. By modifying the parameters, different
instances of the same structure can be easily represented. Also, comparison of two
patterns having the same structure is naturally defined.

ii) Modular: Parts of the representation can be understood as the modules to construct
larger and more complex ones. Complex combinations can be obtained hierarchically
and recursively as well as by simple union and intersection.

iii) Hierarchical: Because it can be applied to any data, it can also be applied to the param-
eter space parametrizing some other structure, leading to a hierarchical representation.

iv) Recursive: It can represent a recursively defined structure, making it particularly pow-
erful in, for instance, representing repeated patterns. The “repeat” can be in various
spaces that can manifest in the final pattern in non-obvious ways.

Finally, diagrams and their cross sections can represent maps between powersets. In
fact, the representation of subsets can be considered a special case where the map sends a
trivial set to the subset. Any computation, in particular, can also be represented.

1.6 Measure of Structural Information
Using the representation, we introduce a measure of information. Roughly speaking, it is
defined as the size of the smallest diagram representing the object, where the diagram can
contain only those maps that can be composed by a set of given structure maps, including
constant maps.

Thus, the measure is relative to the structure and constants expressed explicitly in the
form of maps. The explicit incorporation of the structure of the object space is the key to
avoiding the trap of arbitrariness. The patterns such as shown in Figure 1 all have finite
information according to the measure. The measure is relative to the constants because of
the aforementioned need to separate the information in the structure from that in infinite
objects such as real numbers.

Because of the reasons laid out in 1.1, we do not follow the recipe of interfacing Kol-
mogorov complexity by encoding objects by strings; strings are given no special status in
this theory. Instead, we define it directly in terms of the structure of the spaces in which
the objects reside. As such, the new measure does not depend on Kolmogorov complexity.
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Since the class of applicable objects includes that of strings, however, it raises a question of
their relationship. It turns out that the new measure is equivalent to Kolmogorov complex-
ity in the case where strings are characterized by the structure of natural numbers given by
the constant 0 and the successor function. Note that this is not obvious a priori: the defi-
nition of the representation and the measure does not even mention strings. Also, the new
measure is defined relative to structure maps. It is equivalent to Kolmogorov complexity
when it is defined relative to this particular set of structure maps; relative to other sets, it
may not be. If the set includes the constant maps of all strings, for example, any string’s
information would be 1.

Thus, the new measure gives the larger class of objects a meaningful measure of infor-
mation that generalizes Kolmogorov complexity.

The rest of the paper is organized as follows. In the next section, we define the notion of
diagrams and their cross sections precisely, as well as what is meant by representing with
them. We also list the notations used throughout this paper. In section 3, we illustrate some
properties of the representation by geometric examples. In section 4, we give more exam-
ples, this time those representing computations. In section 5, we define the information
measure of structure of general objects. In section 6, we prove that the measure general-
izes Kolmogorov complexity. In section 7, we further discuss the difference between our
approach and the string-centered one, before concluding.

2 Representation by Diagrams and Cross Sections

2.1 Definitions
We fix the notation for standard finite sets as 1 = {0}, 2 = {0, 1}, · · · , n = {0, 1, · · · , n − 1},
etc. The set 2 is also used as the set of Boolean values, 0 meaning false and 1 true. We
mean by f : X → Y that f is a map from X to Y . We denote the set of all subsets of X (the
power set of X) by 2X. The map from 1 to X that maps 0 ∈ 1 to x ∈ X is denoted by the
same letter x : 1→ X. We call it a constant map.

Definition 1. Let S = (Si)i∈I be a family of sets indexed by a set I . A cross section s of
S is an assignment to each set Si in S of its subset si ⊂ Si.

In other words, a cross section of S is another family (si)i∈I of sets indexed by I such
that si ⊂ Si for all i ∈ I . We used the index set to make clear that there can be multiple
members of the family S that are identical as sets; however, we avoid the use of indices
almost entirely in this paper. We use the set-theoretic notation with S such as S ∈ S .
The equality of two members of S means that their indices are the same; if the indices are
different, we treat them as different, even if they are identical as sets. When we discuss a
set S = Si in S and a cross section s of S , s(S) denotes the subset si assigned to Si by s.
Thus, s assigns each S ∈ S its subset s(S) ⊂ S.
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We denote the set of cross sections of S by Γ(S ). Let T be a subfamily of S . A
cross section of T is called a partial cross section of S . For a cross section s of S , the
cross section of T that assigns s(S) to S in T is called the restriction of s to T , denoted
by s|T . For a cross section t of T , we denote the set {s ∈ Γ(S ) | s|T = t} of cross sections
of S that restrict to t by Γ(S | t).

Definition 2. A diagram is a triple (S ,S ′,M ) of a family S = (Si)i∈I of sets, its sub-
family S ′, and a family M = (φ j) j∈J of maps of the form φ j : 2S → 2T , with S,T ∈ S ,
where I ,J are index sets.

A diagram (S ,S ′,M ) such that both S and M are finite is called a finite diagram.
Let (S ,S ′,M ) be a diagram. There are maps dm : M → S and cdm : M → S such
that φ : 2dm(φ) → 2cdm(φ) for φ ∈ M . Also, define the maps out = dm−1 : S → 2M

and in = cdm−1 : S → 2M so that out(S) = {φ ∈ M | dm(φ) = S} and in(S) = {φ ∈
M | cdm(φ) = S} for S ∈ S .

Definition 3. The cross section of a diagram (S ,S ′,M ) is a cross section s of S such
that, for any S ∈ S with in(S) , ∅, the following holds:

s(S) =
∩

φ ∈ in(S)

φ(s(dm(φ))) if S ∈ S \S ′, (1)

s(S) =
∪

φ ∈ in(S)

φ(s(dm(φ))) if S ∈ S ′. (2)

In diagram (S ,S ′,M ), the subfamily S ′ of S specifies the sets for which a cross
section should satisfy (2) instead of (1); this means that the cross section on that set
should be the union, rather than the intersection, of the images by the incoming maps.
We denote the set of cross sections of diagram (S ,S ′,M ) by Γ(S ,S ′,M ). We also
define Γ(S ,S ′,M | t) = Γ(S ,S ′,M ) ∩ Γ(S | t) for T ⊂ S and t ∈ Γ(T ); i.e.,
Γ(S ,S ′,M | t) is the set of cross sections of diagram (S ,S ′,M ) that restrict to the
cross section t of subfamily T of S .

To illustrate the definitions by example, suppose S = {1, X,Y,Z,W}, S ′ = {W}, w ∈
W, and M = {w, φ, ψ, η, δ, κ} with

w : 21 → 2W , φ : 2Y → 2X, ψ : 2Z → 2Y ,

η : 2W → 2Y , δ : 2W → 2X, κ : 2X → 2W ,

where w is an element of W; the same letter denotes a constant map. We denote the diagram
(S ,S ′,M ) as follows:

X(1)
κ

S3

Y(2)
φoo Z(3)

ψoo

W(4)
w/�

η

OO

δ

ff
(3)
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For instance, φ maps each subset of Y to a subset of X. We omit the set 1 from the diagram:
a constant map is shown as an incoming arrow, without the domain 1. Note also that
the arrows have dotted shafts, which signifies that the map is between power sets. The
parenthesized subscript numbers are for reference: as more than one sets in the family can
be identical as sets, we use these to refer to them. We always use Si to mean the set with the
subscript (i) in the diagram under discussion. Thus, if we are discussing the one in equation
(3), S1 means the set X and S2 means Y , etc. Also, there are two kinds of arrowheads: the
ordinary arrows and round ones. An arrow has the round arrowhead if and only if it is
coming into a set in S ′, in this case S4 = W. For a cross section s of this diagram, we
have, e.g.,

in(X) = {φ, δ}, dm(φ) = Y, s(X) = φ(s(Y)) ∩ δ(s(W)), s(W) = κ(s(X)) ∪ {w}.

A diagram and its partial cross section represents an object in the following sense.

Definition 4. Let (S ,S ′,M ) be a diagram, X a set in S , T a subfamily of S , and t
a cross section of T . Suppose an object is represented in the ground representation as a
subset A of X. The object is said to be represented by (S ,S ′,M ,T , t, X) if s(X) = A for
every cross section s in (S ,S ′,M | t).

The ground representation is a special case of this as a trivial representation; just take
S = S ′ = T = {X},M = ∅, and t(X) = A. Thus the representation is general enough to
include all dense representation. The aim, however, is to enable more efficient representa-
tion that captures the structure.

Here, we also define the concepts of minimality and limit for later use.

Definition 5. Let (S ,S ′,M ) be a diagram, X ∈ S , and G ⊂ Γ(S ,S ′,M ). A cross
section s ∈ G such that no other t ∈ G gives t(X) ( s(X) is said to be minimal on X in G.
We denote the set of such cross sections by minX G.

Note that minY minX G ⊃ minX G∩minY G for X,Y ∈ S : if s ∈ minX G∩minY G, then
s(Y) ⊂ t(Y) for any t ∈ minX G since t ∈ G and s ∈ minY G; thus s ∈ minY minX G. Since
it is also the case that minY minX G ⊂ minX G, by symmetry it follows that minY minX G ∩
minX minY G = minX G ∩minY G.

Definition 6. Let (S ,S ′,M ) be a diagram, X ∈ S ,T ⊂ S , and t ∈ Γ(T ). Furthermore,
let X1, · · · , Xn be a finite number of sets in S . A subset A of X is said to be represented by
the data (S ,S ′,M ,T , t, X, (X1, · · · , Xn)) as a limit if s(X) = A for any cross section s in
minXn minXn−1 · · ·minX1 Γ(S ,S ′,M | t).

2.2 Notations
Here we list some more notations used in this paper.
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i) For any set X, id : X → X denotes the identity map on X and ω : X → 1 the unique
map from X to 1 = {0}. The complement map cmpl : 2X → 2X is defined for A ⊂ X
by:

cmpl(A) = cA = X \ A. (4)

ii) The product map f1 × · · · × fn : X → Y1 × · · · × Yn of maps fi : X → Yi (i = 1, · · · , n)
is defined by ( f1 × · · · × fn)(x) = ( f1(x), · · · , fn(x)). Given a map f : X → Y and a
constant map z : 1→ Z, one can construct a product map:

f × (z ◦ ω) : X → Y × Z

of f and z◦ω : X → Z. By abuse of notation, we denote this map by f ×z : X → Y×Z.
Similarly, we mix maps of the form X → Y and 1 → Z freely in making a product
map.

iii) For a Cartesian product X1 × X2 × · · · × Xn, the map

πi : X1 × X2 × · · · × Xn → Xi

is the projection to the i’th component. We use a shorthand πi j for the product map
πi × π j : X1 × · · · × Xn → Xi × X j, πi jk for πi × π j × πk, and so on.

iv) For a disjoint union X1 + X2 + · · · + Xn, the map

ιi : Xi → X1 + X2 + · · · + Xn

is the injection from the i’th component.

v) The map union f + g : X + Y → Z of maps f : X → Z and g : Y → Z is defined by
( f + g)(x) = f (x) if x ∈ X and ( f + g)(x) = g(x) if x ∈ Y .

vi) For a map f : X → Y , we denote by the same letter the map f : 2X → 2Y between the
power sets defined by f (A) = { f (x) | x ∈ A} ⊂ Y for A ⊂ X.

vii) For a map f : X → Y , the map f −1 : 2Y → 2X is defined by f −1(A) = {x ∈ X | f (x) ∈
A} ⊂ X for A ⊂ Y . By a slight abuse of notation, by f −1(y) for y ∈ Y we mean f −1({y}).

viii) For a map f : X → X, f 0 denotes idX. For a positive integer n, f n denotes the map
f n : X → X defined as applying f for n times as well as the map f n : 2X → 2X defined
as in vi). When n is a negative integer, f n denotes the map f n : 2X → 2X defined as
applying f −1 : 2X → 2X for −n times.

3 Geometric Patterns
Using diagrams and cross sections, we can represent geometric objects in a uniform and
compact way. In this section, we introduce the representation and discuss its properties
using examples.
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3.1 Examples
As the simplest example, we consider a circle in the Euclidean plane X. Let us denote the
vector space of translations in X by V . Also, denote the map that sends (x, y) ∈ X × X to
x − y by sub : X × X → V , and the map that gives the length of a vector by len : V → R.

Consider the following diagram:

R(1)
len−1

// V(2)

sub−1

��
X(3)

π2
−1

// X × X(4)
π1 // X(5)

(5)

This denotes a diagram (S ,S ′,M ) with

S = (S1, · · · , S5), S ′ = ∅, S1 = R, S2 = V, S3 = S5 = X, S4 = X × X

and

M = (len−1 : 2S1 → 2S2 , sub−1 : 2S2 → 2S4 , π2
−1 : 2S3 → 2S4 , π1 : 2S4 → 2S5).

Note that, while the inverse maps are indicated by −1, the power map in the forward
direction is to be surmised from the convention that the map is between powersets.

Suppose that T = {S1, S3} and that its cross section t is defined by

t(S1) = {r}, t(S3) = {p},

where r is a positive real number and p is a point in the Euclidean plane X. Let s be a cross
section in Γ(S ,S ′,M | t). Then, by (1), we have

s(S2) = len−1(s(S1)) = len−1(t(S1)) = len−1({r}) = {v ∈ V | len(v) = r},
s(S4) = sub−1(s(S2)) ∩ π2

−1(s(S3))
= {(x, y) ∈ X × X | x − y ∈ s(S2), y ∈ s(S3)},

s(S5) = {π1((x, y)) ∈ X | (x, y) ∈ s(S4)}
= {x ∈ X | x − y ∈ s(S2), y ∈ s(S3)}
= {x ∈ X | len(x − p) = r}.

Thus the cross section s is completely determined and s(S5) is the set of the points on the
circle centered at p with radius r. In this way, (S ,S ′,M ,T , t, S5) represents the circle.

If t(S3) = {p, q}, it represents two circles with the same radius r centered at p and q.
Thus, we can think of S3 as the space of centers of the circles. If t(S1) = {r, t} instead, it
would represent two concentric circles with radii r and t. If we modify the diagram to

R × X(1)
((len ◦ π1)×π2)−1

// V × X(2)
(sub×π2)−1

// X × X(3)
π1 // X(4)
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and let T = {S1} and define t ∈ Γ(T ) by t(S1) = {(r1, p1), (r2, p2), · · · }, then we have

s(S2) = {(v, x) ∈ V × X | (len(v), x) ∈ t(S1)},
s(S3) = {(x, y) ∈ X × X | (x − y, y) ∈ s(S2)},
s(S4) = {x ∈ X | ∃y ∈ X, (len(x − y), y) ∈ t(S1)},

and we have as s(S4) the circles specified by the radius-center pairs in t(S1).
For another example, a line in X can be represented using the following diagram:

V(1)
π1
−1

// V × R(2)

sub−1 ◦mult

��
X(3)

π2
−1

// X × X(4)
π1 // X(5)

(6)

Here, mult : V × R → V is the scalar multiplication. Other maps are as above. Suppose
that T = {S1, S3} and that its cross section t is defined by

t(S1) = {v}, t(S3) = {p},

where p is a point in the Euclidean plane X and v is a vector in V . Let s be a cross section
in Γ(S ,S ′,M | t). Then, from (1) we have

s(S2) = π1
−1({v}) = {(v, c) ∈ V × R | c ∈ R},

s(S4) = sub−1(mult(s(S2))) ∩ π2
−1({p})

= sub−1({cv ∈ V | c ∈ R}) ∩ π2
−1({p})

= {(x, p) ∈ X × X | ∃c ∈ R, x − p = cv},
s(S5) = {x ∈ X | ∃c ∈ R, x − p = cv}

= {p + cv | c ∈ R}.

Thus, the cross section s is completely determined and s(S5) consists of the points on the
line that goes through p and has the direction parallel to v.

3.2 Union
As mentioned in 2.1,

S1
ϕ // S2 S3

ψoo

denotes the case when (1) in Definition 3 is required, i.e., S2 ∈ S \S ′. Any cross section
s of the diagram satisfies s(S2) = ϕ(s(S1)) ∩ ψ(s(S3)). To denote the other case, we use

S1
ϕ

_? S2 S3
ψ

� � (7)
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to indicate that S2 ∈ S ′ and s(S2) = ϕ(s(S1))∪ψ(s(S3)). Thus, for any set in S ′, incoming
maps are depicted with the round arrow.

In the examples, we may use two kinds of incoming arrows as:

S1
φ

_? S2 S3
ψ

� �

S4

θ
oO

S5

η
__

It means s(S2) = (φ(s(S1)) ∪ ψ(s(S3)) ∪ θ(s(S4))) ∩ η(s(S5)), i.e., we take the unions first,
and then the intersection. This is simply an abbreviation of

S1
φ

_? S6

id
��

S3
ψ

� �

S4

θ

kK

S2 S5
ηoo

If we allow the complement map cmpl : 2X → 2X in diagrams, we need only one of the
conditions in Definition 3, because we can make unions from intersections or vice versa.
Using cmpl,

S1
cmpl ◦ ϕ // S4

cmpl
��

S3
cmpl ◦ψoo

S2

(8)

s(S4) = cϕ(s(S1)) ∩ cψ(s(S3))
s(S2) = cs(S4) = ϕ(s(S1)) ∪ ψ(s(S3)).

Thus, (8) is equivalent to (7).

3.3 Representing maps
A diagram with partial cross section can represent a map in the following sense:

Definition 7. A map φ : 2X → 2Y is said to be represented by (S ,S ′,M ,T , t, X, Y) if
(S ,S ′,M ) is a diagram, T ⊂ S , t ∈ Γ(T ), X,Y ∈ S , and every cross section s in
Γ(S ,S ′,M | t) satisfies s(Y) = φ(s(X)).

As an example, let us represent the map cl : 2X → 2X that maps a subset A of a Eu-
clidean space X to the topological closure Ā of A in X. Consider the diagram (S ,S ′,M ):

X(1)
π1
−1

// X × X(2)
sub×π2 // V × X(3)

(len ◦ π1)×π2 // R × X(4)
Inf // R × X(5)

π2

��
R(6)

π1
−1

66

X(7)

17



Here, the map Inf maps B ⊂ R × X to {(a, x) ∈ R × X | x ∈ π2(B), a = inf π1(B ∩ π2
−1(x))};

thus, for each x ∈ X that appears in B, there is an element (a, x) in Inf(B), where a is the
infinimum of the set of real numbers b that appear as (b, x) in B. Now, if T = {S6}, t(S6) =
{0}, s ∈ Γ(S ,S ′,M | T ), and s(S1) = A, we have

s(S2) = {(x, y) | x ∈ A, y ∈ X}
s(S4) = {(d, y) | y ∈ X, ∃x ∈ A, len(x − y) = d}
s(S7) = {y ∈ X | inf

x∈A
len(x − y) = 0} = Ā.

Thus (S ,S ′,M ,T , t, S1, S7) represents cl.
The infinimum map Inf in turn can be represented by

R × X(1)
π13
−1

// R × R × X(2)
π2×(lt ◦ π12)×π3 // R × 2 × X(3)

cmpl ◦ π13 // R × X(4)

Max
��

2(5)

π2
−1

OO

R × X(6)

with T = {S5}, t(S5) = {1}. The map lt : R×R→ 2 maps (a, b) to 1 if a < b and 0 otherwise,
while the map Max maps B ⊂ R×X to {(a, x) ∈ R×X | x ∈ π2(B), a = max π1(B∩π2

−1(x))}.
Then if s ∈ Γ(S ,S ′,M | T ) and s(S1) = B we have

s(S2) = {(a, b, x) | (a, x) ∈ B, b ∈ R},
s(S3) = {(b, 1, x) | ∃(a, x) ∈ B, a < b},
s(S4) = {(b, x) | @(a, x) ∈ B, a < b},
s(S6) = {(c, x) | x ∈ π2(B), c = max{b ∈ R | @(a, x) ∈ B, a < b}}

= {(c, x) | x ∈ π2(B), c = inf(B ∩ π2
−1(x))}.

Thus (S ,S ′,M ,T , t, S1, S6) represents Inf.
Finally, the maximum map Max can be represented by

R × X(1)

π23
−1

��
π13
−1

��

id // R × X(2)

R × R × X(3)
π1×(lt ◦ π12)×π3 // R × 2 × X(4)

cmpl ◦ π13

OO

2(5)
π2
−1

oo

with T = {S5}, t(S5) = {1}. Then if s ∈ Γ(S ,S ′,M | T ) and s(S1) = B we have

s(S3) = {(a, b, x) | (a, x), (b, x) ∈ B},
s(S4) = {(a, 1, x) | (a, x) ∈ B, ∃(b, x) ∈ B, a < b},
s(S2) = {(a, x) ∈ B | @(b, x) ∈ B, a < b}.

Thus (S ,S ′,M ,T , t, S1, S2) represents Max.
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3.4 Recursive Definition
Consider the following diagram:

V(1)
π2
−1

// X × V (2)

add
?�

X(3)
id _? X(4)

π1
−1

OO
(9)

Here, add : X × V → X is the parallel translation (x,w) 7→ x + w in the Euclidean space X.
Suppose that T = {S1, S3} and that its cross section t is defined by

t(S1) = {v}, t(S3) = {p}, (10)

where p is a point in the Euclidean plane X and v is a vector in V . Let s be a cross section
in Γ(S ,S ′,M | t). Then, from (1) we have

s(S2) = {(x,w) | x ∈ s(S4),w ∈ s(S1)},
s(S4) = {p} ∪ {x + w | (x,w) ∈ s(S2)}

= {p} ∪ {x + w | x ∈ s(S4),w ∈ s(S1)} (11)

From (11), clearly s(S4) ⊃ D = {p, p + v, p + 2v, p + 3v, · · · }, i.e., s(S4) contains
equally spaced points beginning at p and separated by v. However, this does not uniquely
determine the cross section: for instance, we can define s(S4) = X; or indeed any set that is
the union of D and a set invariant under the translation by v.

To make it unique, we can take minS4 Γ(S ,S ′,M | t). Then it only contains the cross
section with s(S4) = D.

Or we can use the following proposition. Let N = {0, 1, 2, 3, · · · } denote the set of
natural numbers.

Proposition 1. Suppose that a set S has a “grading” function g : S→ N and let Sn denote
g−1(n) for n ∈ N. Consider a map η : 2S → 2S that satisfies, for i ∈ N,

η(Si) ⊂ Si+1, η(S) =
∞∪

n=0

η(Sn).

If S can be written S = S0 ∪ η(S), then

S =
∞∪

n=0

ηn(S0).

Proof. Since Sn , Sm if n , m, for x ∈ Sn+1 with n ∈ N, x < S0 and x < η(Sm) ⊂ Sm+1 if
m , n. Thus x ∈ η(Sn) follows from

S = S0 ∪ η(S) = S0 ∪
∞∪

n=0

η(Sn).
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Thus Sn+1 ⊂ η(Sn). Since η(Sn) ⊂ Sn+1, it follows η(Sn) = Sn+1. Therefore, Sn = η(Sn−1) =
η(η(Sn−2)) = · · · = ηn(S0). The proposition follows from

S =
∞∪

n=0

Sn.

�

To use Proposition 1, we modify (9) as:

V(1)
π2
−1

// X × V × N(2)

φ

?�

X × N(3)
id _? X × N(4)

π13
−1

OO

π1 // X(5)

(12)

and define φ : X × V × N → X × N by φ((x,w, k)) = (x + w, k + 1) as well as modifying
(10) to t(S1) = {v}, t(S3) = {(p, 0)}. Then (11) becomes

s(S4) = s(S3) ∪ φ(s(S2))
= {(p, 0)} ∪ {(x + w, k + 1) | (x, k) ∈ s(S4),w ∈ s(S1)}. (13)

We define g : s(S4)→ N by g((x, k)) = k and η : 2s(S4) → 2s(S4) by

η(A) = {(x + w, k + 1) | (x, k) ∈ A,w ∈ s(S1)}.

Then g and η clearly satisfy the condition of Proposition 1. Thus it follows from (13) and
the proposition that

s(S4) =
∞∪

n=0

η({(p, 0)})

= {(p, 0), (p + v, 1), (p + 2v, 2), (p + 3v, 3), · · · }.

Thus Γ(S ,S ′,M | t) contains only this cross section s with s(S5) = D, and D is
represented by (S ,S ′,M ,T , t, S5).

If we set t(S1) = {v,−v}, then

s(S4) = {(p, 0)} ∪ {(x + v, k + 1) | (x, k) ∈ s(S4)} ∪ {(x − v, k + 1) | (x, k) ∈ s(S4)}

and thus
s(S5) = {· · · , p − 3v, p − 2v, p − v, p, p + v, p + 2v, p + 3v, · · · }.

Moreover, if we set t(S1) = {v,−v, u,−u}, then in general we get a grid points as shown in
Figure 3(a).
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Figure 3: (a) Recursively defined points. (b) Sierpinski triangle. (c) Hierarchically defined
grid of circles. (d) Hierarchically defined lines.

3.4.1 Sierpinski triangle

Consider the diagram (S ,S ′,M ):

X(1)
π1
−1

// X × X(2)
π1
−1 ◦ sub // V × R(3)

sub−1 ◦mult
��

R(4)
π2
−1

oo

X(5)
π2
−1

//

π2
−1

OO

X × X(6)
π1 // X(7)

Here, let T = {S4, S5} and t(S4) = {0.5} , t(S5) = {p}. Then for s ∈ Γ(S ,S ′,M | t),

s(S2) = {(x, p) | x ∈ s(S1)}
s(S3) = {(x − p, 0.5) | x ∈ s(S1)}
s(S6) = {(y, p) | 0.5(x − p) = y − p, x ∈ s(S1)}
s(S7) = {p + 0.5(x − p) | x ∈ s(S1)}.

Let us define a map dp : X → X for p ∈ X by dp(x) = p + (x − p)/2. Then, the power map
of dp is represented by (S ,S ′,M ,T , t, S1, S7).

For three points a, b, and c forming a triangle T in X, let us define a map φabc : 2X → 2X

by φabc(A) = da(A) ∪ db(A) ∪ dc(A) for A ⊂ X. Obviously, φabc can also be represented by
a diagram. Then, consider the diagram

X(1)
id×0 _? X × N(2)

φ′abc

O/ cl ◦ π1 // X(3)

Here, φ′abc is φabc that increments the second component and id×0 maps A ⊂ X to A×{0} =
{(x, 0) | x ∈ A} ⊂ X × N. Let T = {S1} and let t(S1) = T . Then by Proposition 1,
s(S2) =

∪∞
n=0 φ

′
abc(T × {0}). Then s ∈ Γ(S ,S ′,M | T ) gives as s(S3) the closure of∪∞

n=0 φabc(T ), which is a fractal set known as the Sierpinski triangle. See Figure 3(b).
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V(1)
π2
−1

// X × V (2)

add
��

X(3)

π1
−1

::

X(4) (a) (b) (c) (d)

Figure 4: A diagram to make repeated patterns with arbitrary patches. (a) A patch to be B:
it can be any random data. (b) Regularly repeated patches. (c) A set A of random vectors.
(d) Randomly repeated patches.

3.5 Hierarchical Definition
Combining (5) and (12), we consider (S ,S ′,M ):

V(1)
π2
−1

// X × V × N(2)

φ

?�

R(3)
len−1

// V(4)

sub−1

��
X × N(5)

id _? X × N(6)

π13
−1

OO

π1 // X(7)
π2
−1

// X × X(8)
π1 // X(9)

The left-half comes from (12) and produces the grid points in S7, which is the space of
center points in the right-half (5). With T = {S1, S3, S5} and

t(S1) = {v,−v, u,−u}, t(S3) = {r}, t(S5) = {(p, 0)},

(S ,S ′,M ,T , t, S9) represents a grid of circles as shown in Figure 3(c).
Similarly, with the diagram (S ,S ′,M ):

V(1)
π2
−1

// X × V × N(2)

φ

?�

V(3)
π1
−1

// V × R(4)

sub−1 ◦mult

��
X × N(5)

id _? X × N(6)

π13
−1

OO

π1 // X(7)
π2
−1

// X × X(8)
π1 // X(9)

let T = {S1, S3, S5} and

t(S1) = {v,−v}, t(S3) = {u}, t(S5) = {(p, 0)}.

Then (S ,S ′,M ,T , t, S9) represents the lines that is parallel to u and go through the
points {· · · , p − 3v, p − 2v, p − v, p, p + v, p + 2v, p + 3v, · · · }, as shown in Figure 3(d).

3.6 Two-part Coding
It may seem that the representation can represent only very regular and simple objects
such as geometric shapes like circles and lines, except maybe by the trivial representation.
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That is not the case. It can represent the regular part of the object sparsely and the ran-
dom part densely, then mix them in various ways—intersection, union, hierarchically, and
recursively—with any computation, in fact, as we will see. If there is regularity, it can be
exploited. For example, in the diagram on the left of Figure 4, we can take any pair of sub-
sets A ⊂ V and B ⊂ X and consider a partial cross section t such that t(S1) = A, t(S3) = B.
This gives us, for instance, repeated patterns with arbitrary patches by setting A to be a reg-
ular grid by (12) and B to be the patch (Figure 4(b), with the patch (a)). Using an arbitrary
set A as well (c), we can also have a randomly repeated patches (d). This has still much
more regularity than a completely random data.

Separating the information in an object into a regular part and the remaining random
part is the basic idea behind many formalisms such as Kolmogorov minimum sufficient
statistic[10] and minimum description length (MDL)[11]. Our representation can also uti-
lize this basic idea, which is how simple objects can be represented more concisely than
random objects.

The representation of lines and circles by specifying points and vectors is simple; With
diagrams and cross sections, such simple representation and more complex ones involving
any computation can be uniformly embedded in the spaces that the objects reside. We
have shown a glimpse of such integration in the grid example and the Sierpinski triangle
example. In the next section, we discuss further the representation of computation by
diagrams and their cross sections.

4 Computation
With diagrams and their cross sections, we can represent computation. In this section, we
first examine a few examples of explicit representation of concrete computation. We then
show that any Turing machine can be represented by diagrams and cross sections.

4.1 Examples
4.1.1 Factorials

Let succ : N→ N denote the successor function and mult : N×N→ N the multiplication.
Consider the following diagram (S ,S ′,M ):

N × N(1)
id _? N × N(2) φ� o

where φ = (π1 × mult) ◦ ((succ ◦ π1) × π2) maps (n,m) to (n + 1,m(n + 1)). Suppose that
T = {S1} and that its cross section t is defined by

t(S1) = {(0, 1)}.
Let s be a cross section in Γ(S ,S ′,M | t). Then we have

s(S2) = s(S1) ∪ φ(s(S2)) = {(0, 1)} ∪ φ(s(S2)). (14)
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We define a grading function g : N × N → N by g((n,m)) = n. Then g and φ clearly
satisfy the condition of Proposition 1, and it follows from (14) that

s(S2) =
∞∪

n=0

φ({(0, 1)}) = {(0, 1), (1, 1), (2, 2), (3, 6), · · · , (n, n!), · · · }. (15)

Therefore, Γ(S ,S ′,M | t) only contains the cross section s defined by s(S1) = {(0, 1)}
and (15); and (S ,S ′,M ,T , t, S2) represents the set of all pairs of natural number and its
factorial.

We can extend the diagram to

N × N(1)
id _? N × N(2) φ� o

id
��

N(3)
π1
−1

// N × N(4)
π2 // N(5)

Then, the (power map of the) factorial map is represented by (S ,S ′,M ,T , t, S3, S5).

4.1.2 Fibonacci Number

Consider the following diagram (S ,S ′,M ):

N+ × N+(1)
id _? N+ × N+(2)

φ

� o

π1 // N+(3)

where N+ is the set of positive integers, φ = π2 × add with add : N+ × N+ → N+ the
addition. Thus φ((n,m)) = (m, n +m). Suppose that T = {S1} and that its cross section t is
defined by t(S1) = {(1, 1)}. Then if s ∈ Γ(S ,S ′,M | t) we have

s(S2) = {(1, 1)} ∪ φ(s(S2)).

If (n,m) ∈ s(S2)\{(1, 1)}, it must be the case that (n,m) ∈ φ(s(S2)) and (m−n, n) ∈ s(S2).
If this is not in s(S2), then (2n − m,m − n) is in s(S2), and so on. Since the sum of the
two components decreases by this process, it cannot go on indefinitely and has to stop by
reaching (1, 1). Thus

s(S2) =
∞∪

n=0

φ({(1, 1)}) = {(1, 1), (1, 2), (2, 3), (3, 5), · · · }

and s(S3) = {1, 1, 2, 3, 5, 8, · · · }, which is the set of Fibonacci numbers.
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4.1.3 Mandelbrot Set

Consider the diagram (S ,S ′,M ):

C × C × N(1)φ oO

π12 // C × C(2)
cmpl ◦ π1 // C(3)

C × C × N(4)

id

� _

C(5)

π2
−1

OO

Here, C is the set of complex numbers. The map φ is defined by

φ((c, z, k)) = (c, c + z2, k + 1).

Suppose that T = {S4, S5} and that its cross section t is defined by

t(S4) = {(c, 0, 0) ∈ C × C × N | c ∈ C},
t(S5) = {z ∈ C | |z| > 2}

Let s be a cross section in Γ(S ,S ′,M | t). Then we have

s(S1) = φ(s(S1)) ∪ s(S4) = φ(s(S1)) ∪ {(c, 0, 0) ∈ C × C × N | c ∈ C}.

Define g : s(S1)→ N by g((c, z, k)) = k. Then by Proposition 1,

s(S1) =
∞∪

n=0

φ(s(S4)) = {(c, zc
n, n) ∈ C × C × N | c ∈ C, n ∈ N},

where zc
n is defined by zc

0 = 0 and zc
n+1 = (zc

n)2 + c.
Thus Γ(S ,S ′,M | t) contains only one cross section s given by:

s(S1) = {(c, zc
n, n) ∈ C × C × N | c ∈ C, n ∈ N},

s(S2) = {(c, zc
n) ∈ C × C | c ∈ C, n ∈ N, |zc

n| > 2},
s(S3) = {c ∈ C | @n ∈ N, |zc

n| > 2},
s(S4) = {(c, 0, 0) | c ∈ C},
s(S5) = {z ∈ C | |z| > 2}.

The Mandelbrot set is defined to be the set of complex numbers c such that zc
n does not

tend to infinity. It is known that zc
n tends to infinity if and only if |zc

n| > 2 for some n ∈ N.
Thus s(S3) is the Mandelbrot set.
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4.1.4 Sum

Let X be a finite set and let (ax)x∈X be real numbers indexed by X. Consider the following
diagram (S ,S ′,M ):

X × R(1)
(s ◦ π1)×π2 _? 2X × R(2)

π12
−1

��
π34
−1

��

id // 2X × R(3)
π2 // R(4)

2X
(5)

π1
−1 ◦ cmpl

88

(∩◦ π13)−1
// 2X × R × 2X × R(6)

φ

� _

2X
(7)

π1
−1

OO

where the maps are defined as:

s : X ∋ x 7→ {x} ∈ 2X

∩ : 2X × 2X ∋ (A, B) 7→ A ∩ B ∈ 2X

φ : 2X × R × 2X × R ∋ (A, x, B, y) 7→ (A ∪ B, x + y) ∈ 2X × R

Suppose that T = {S5, S7} and that its cross section t is defined by t(S5) = {∅} and
t(S7) = {X}. Let s be a cross section in Γ(S ,S ′,M | t) and assume

s(S1) = {(x, ax) | x ∈ X}.

Then we have

s(S2) =
[{({x}, ax) | x ∈ X} ∪ φ(s(S6))

] ∩ π1
−1(cs(S5))

= {({x}, ax) | x ∈ X} ∪ {(A ∪ B, a + b) | (A, a, B, b) ∈ s(S6), A ∪ B , ∅} (16)
s(S6) = {(A, a, B, b) | (A, a), (B, b) ∈ s(S2), A ∩ B = ∅} (17)

Let us denote aA =
∑

x∈A ax for A ⊂ X, A , ∅.

Proposition 2.
s(S2) = {(A, aA) | A ⊂ X, A , ∅}.

Proof. Define sn = {(A, a) ∈ s(S2) | |A| = n} and tn = {(A, aA) | A ⊂ X, |A| = n} for
n = 1, 2, · · · , |X|. We use an induction on n to prove sn = tn. Suppose s1 ∋ (A, a).
If (A, a) is not of the form ({x}, ax) for some x ∈ X, it is in φ(s(S6)) and there must be
(B, b), (C, c) ∈ s(S2) such that A = B ∪ C and B ∩ C = ∅. However, it is impossible since
|A| = 1 and there is no element in s(S2) of the form (∅, a). Thus s1 ⊂ tn. Since s1 ⊃ t1 by
(16), this proves the case n = 1. Now, suppose n ≥ 2 and sn ∋ (A, a). Since |A| ≥ 2, (A, a)
must be in φ(s(S6)). Then there exist (B, b), (C, c) ∈ s(S6) such that A = B ∪ C, B ∩ C = ∅,
and a = b + c. But by the induction hypothesis b = aB, c = aC so a = aB + aC = aA.
Thus sn ⊂ tn. On the other hand, suppose (A, aA) ∈ tn and x ∈ A. Then ({x}, ax) ∈ t1 =

s1 ⊂ s(S2) and (A \ {x}, aA\{x}) ∈ tn−1 = sn−1 ⊂ s(S2) by the induction hypothesis. Thus
(A, aA) = φ(({x}, ax, A \ {x}, aA\{x})) ∈ s(S2). Thus (A, aA) ∈ sn and sn ⊃ tn. �
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It follows

s(S3) = {(X, aX)}
s(S4) = {aX}.

Thus (S ,S ′,M ,T , t, S1, S4) represents the map ΣX : 2X×R → 2R that satisfies

ΣX({(x, ax) | x ∈ X}) =
∑

x∈X

ax

 .
For a general subset A ⊂ X × R, ΣX gives

ΣX(A) =

∑
x∈X

f (x)

∣∣∣∣∣∣ f : X → R, s.t. ∀x ∈ X, (x, f (x)) ∈ A

 .
4.1.5 Markov Random Field

A Markov random field (MRF) consists of an undirected graph G = (V, E), a finite set L
of labels, and an energy function E on the space LV of label assignments to vertices, or
configurations. The energy function must be of the form:

E (X) =
∑
C∈C

EC(X),

where C denotes the set of cliques in G and EC a function on LV with the property that
EC(X) depends only on values of X ∈ LV on C. An MRF is of the first-order if EC(X) is
constant unless C is a vertex or an edge, and thus the energy can be written as:

E (X) =
∑
v∈V

E1(v, X(v)) +
∑

(u,v)∈E

E2(u, X(u), v, X(v))

with E1 : V ×L→ R and E2 : V ×L×V ×L→ R. We assume that E2(u, L, v, L′) = 0 unless
(u, v) is an edge. Solving an MRF involves finding the configuration X with the minimum
E (X).

Consider the following diagram (S ,S ′,M ):

V × L + V × L × V × L(1)
E ′ // (V + V × V) × R(2)

ΣV+V×V // R(3)

ltsup

��
V × L × L(4) V × L(5)

π12
−1

��

π13
−1

__
cmpl ◦ π122oo π2 //

(id+π12)−1

OO

(id+π34)−1

OO

V(6) R(7)
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Define the maps

E′1 = π1 × E1 : V × L→ V × R
E′2 = π1 × π3 × E2 : V × L × V × L→ V × V × R.

Also, define the map

ψ : V × R + V × V × R→ (V + V × V) × R

by
ψ = (ι1 ◦ π1 + ι2 ◦ π12) × (π2 + π3).

Then
E ′ = ψ ◦ (E′1 + E′2) : V × L + V × L × V × L→ (V + V × V) × R

The map ΣV+V×V : (V+V×V)×R→ R is defined in 4.1.4. Also, define ltsup : 2R → 2R

by ltsup(A) = {x ∈ R | ∃y ∈ A, x ≤ y}, which can be represented by

R
π2
−1

// R × R π1×≤ // R × 2
π1 // R

2

π2
−1

OO

where the map ≤: R × R → 2 maps (x, y) to 1 if x ≤ y and 0 otherwise, and a partial cross
section is defined by s(2) = {1}.

Suppose that T = {S4, S6} and that its cross section t is defined by t(S4) = ∅, t(S6) = V .
Let s be a cross section in Γ(S ,S ′,M | t). Then, from

s(S4) = {(v, l1, l2) | (v, l1), (v, l2) ∈ s(S5)} ∩ c{(v, l, l) | (v, l) ∈ s(S5)}
= {(v, l1, l2) | (v, l1), (v, l2) ∈ s(S5), l1 , l2}
= ∅

it follows that there is at most one element (v, l) ∈ s(S5) for each v ∈ V . From s(S6) =
π2(s(S5)) = V , there must be one for each v, thus there is exactly one element (v, l) ∈ s(S5)
for each v ∈ V . Thus, s(S5) defines a configuration Xs ∈ LV by defining Xs(v) = l for each
(v, l) ∈ s(S5). Then,

s(S1) ={(v, Xs(v)) | v ∈ V} + {(u, Xs(u), v, Xs(v))) | u, v ∈ V}
s(S2) ={(v, E1(v, Xs(v)))) | v ∈ V} + {((u, v), E2(u, Xs(u), v, Xs(v)))) | u, v ∈ V}
s(S3) ={E (Xs)}
s(S7) ={x ∈ R | x ≤ E (Xs)}

Thus by minimizing on S7, minS7Γ(S ,S ′,M | t) gives the cross sections in s(S5) that give
the configurations with the minimum energy in s(S3). Obviously, higher order MRFs can
be treated in the same manner.
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4.1.6 Finite Automaton

Let (Q,Σ, δ, q0, F) be a finite automaton, where Q and Σ are the finite sets of states and
symbols, respectively, and δ : Σ × Q → Q is the transition function, q0 ∈ Q is the initial
state, and F ⊂ Q is the accepting subset of Q.

Consider the diagram (S ,S ′,M ):

Σ∗(1)

π1
−1

))

Σ∗ × Q × N(2)

δ∗
� o

π12 // Σ∗ × Q(3)

π2

''

Q(4)
π2
−1

oo

Q × N(5)
π23
−1

// Σ∗ × Q × N(6)

id

� _

Σ∗(7)

π1
−1

OO

Q(8)

Here, Σ∗ is the set of strings on Σ and

δ∗ : Σ∗ × Q × N ∋ (τ, q, k) 7→
(τ, q, k + 1) if τ = ϵ

(cdr(τ), δ(car(τ), q), k + 1) otherwise

where car(τ) ∈ Σ is the first symbol in the string τ and cdr(τ) ∈ Σ∗ is the rest of the string.
Suppose that T = {S1, S4, S5, S7} and that its cross section t is defined by

t(S1) = {σ}, t(S4) = F, t(S5) = {(q0, 0)}, t(S7) = {ϵ},

where σ ∈ Σ∗ is a string and ϵ denotes the empty string.
Let s be a cross section in Γ(S ,S ′,M | t). Then

s(S6) = {(σ, q0, 0)},
s(S2) = s(S6) ∪ δ∗(s(S2)).

Define g : s(S2)→ N by g((τ, q, k)) = k. Then by Proposition 1,

s(S2) =
∞∪

n=0

δ∗(s(S6)) = {(δ∗)n((σ, q0, 0)) | n = 0, 1, 2, · · · }.

Thus s(S2) is the whole execution history of the automaton, beginning with (σ, q0, 0).
Therefore, from

s(S3) = {(ϵ, q) | (ϵ, q, k) ∈ s(S2), q ∈ F},
s(S8) = {q | q ∈ F, ∃(ϵ, q) ∈ s(S3)},

s(S8) is nonempty if and only if the automaton accepts σ.
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4.2 Turing completeness
4.2.1 Turing Machine

Let M = (Q,Σ,Θ, , δ, q0, qA, qR) be a Turing machine, where Q is the finite set of states, Σ
is the input alphabet, Θ is the finite set of internal symbols such that Σ ⊂ Θ, is the blank
symbol in Θ \ Σ, δ : Θ×Q→ Θ×Q× {−1, 1} is the transition function, and q0, qA, qR ∈ Q
are the initial, accept, and reject states, respectively.

Consider the following diagram (S ,S ′,M ):

Σ∗(1)

π1
−1

((

Θ∗ × Q × N × N(2)

δ∗

� _

π2 // Q(3)

Q × N × N(4)
π234

−1
// Θ∗ × Q × N × N(5)

id

� _

Q(6)

π2
−1

OO

(18)

Among the components of Θ∗ ×Q×N×N ∋ (σ, q, n, k), the first three represent a configu-
ration of the machine, with σ the content of the tape, q the state of the machine, and n the
position of the head. The last component k is a step number. The map δ∗ : Θ∗×Q×N×N→
Θ∗ × Q × N × N is defined so that it updates the configuration of the machine by one step,
as follows.

For a string σ, σ[n] denotes the n’th symbol in the string. We use the zero-based index,
so σ[0] denotes the first symbol of σ.

First, we define

η : Θ∗ × Q × N × N × (Θ × Q × {−1, 1})→ Θ∗ × Q × N × N. (19)

Suppose (σ, q, n, k, (x, q′, v)) ∈ Θ∗ × Q × N × N × (Θ × Q × {−1, 1}). If q = qA or q = qR,
η(σ, q, n, k, (x, q′, v)) = (σ, q, n, k + 1). Otherwise, η(σ, q, n, k, (x, q′, v)) = (σ′, q′, n′, k + 1),
where n′ = n + v unless n + v < 0, in which case n′ = 0. As for σ′, it is the string made
from σ by (i) replacing σ[n] by x if 0 ≤ n ≤ |σ| − 1, or (ii) appending x if n = |σ|, where
|σ| denotes the length of the string σ.

Next, define θ : Θ∗ × Q × N→ Θ × Q × {−1, 1} by

θ(σ, q, n) =

δ(σ[n], q) if 0 ≤ n ≤ |σ| − 1
δ( , q) otherwise

for (σ, q, n) ∈ Θ∗ × Q × N.
Then δ∗ is defined by

δ∗(σ, q, n, k) = η(σ, q, n, k, θ(σ, q, n)).

Suppose that T = {S1, S4, S6} and that its cross section t is defined by

t(S1) = {σ}, t(S4) = {(q0, 0, 0)}, t(S6) = {qA, qR},
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where σ ∈ Σ∗.
Let s be a cross section in Γ(S ,S ′,M | t). Then

s(S5) = {(σ, q0, 0, 0)},
s(S2) = {(σ, q0, 0, 0)} ∪ δ∗(s(S2)).

Define g : s(S2)→ N by g((τ, q, n, k)) = k. Then by Proposition 1,

s(S2) =
∞∪

n=0

δ∗n(s(S5)) = {(δ∗)n((σ, q0, 0, 0)) | n = 0, 1, 2, · · · }.

Thus s(S2) is the whole execution history of the Turing machine M, beginning with (σ, q0, 0, 0).
Therefore, if M accepts the string σ, s(S3) = {qA}; if it rejects σ, s(S3) = {qR}; and if it
does not terminate, s(S3) = ∅.

4.2.2 Nondeterministic Turing Machine

The case of nondeterministic Turing machine is similar to the deterministic case. Let
N = (Q,Σ,Θ, , δ′, q0, qA, qR) be a nondeterministic Turing machine, where Q, Σ, Θ, , q0,
qA, and qR are as before, and δ′ : Θ × Q → 2Θ×Q×{−1,1} is the nondeterministic transition
function that gives the set of possible transitions.

The same diagram (18) as the deterministic case will do with just a modification of the
definition of δ∗ : 2Θ∗×Q×N×N → 2Θ∗×Q×N×N as follows:

δ∗(A) = {η(σ, q, n, k, τ) | (σ, q, n, k) ∈ A, τ ∈ θ′(σ, q, n)},

where θ′ : Θ∗ × Q × N→ 2Θ×Q×{−1,1} is defined by

θ′(σ, q, n) =

δ′(σ[n], q) if 0 ≤ n ≤ |σ| − 1
δ′( , q) otherwise

and η is as before (19).
The cross section has s(S9) ∋ qA if and only if N accepts the string σ.

5 Information Measure of Structure
We define an information measure of general subsets. The measure takes into account the
structure of the set characterized by maps, which we call the structure maps. Thus, it is a
measure of information relative to the structure maps. Essentially, the measure is the size
of the smallest diagram that represents the given subset, in which the maps in the diagram
can be written in terms of the structure maps.
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5.1 Maps Generating Diagrams
Definition 8. Let M be a set of maps. The set ⟨M ⟩ of maps generated by M is defined
as follows:

a) If f is in M , or it is id, ω, or a projection map πi, then f is in ⟨M ⟩.

b) If maps f : X → Y, g : Y → Z are in ⟨M ⟩, then g ◦ f : X → Z is also in ⟨M ⟩.

c) If maps fi : X → Yi (i = 1, · · · , n) are in ⟨M ⟩, then the product map f1 × · · · × fn : X →
Y1 × · · · × Yn is also in ⟨M ⟩.

Note that for any X and x ∈ X, x : 1 → X is a map, which can be contained in the set
M of maps in this context. When M contains all maps x : 1→ X, we write X ⊂M .

Definition 9. Let M be a set of maps. For a map f in ⟨M ⟩, its size | f |M relative to M is
defined as follows:

a) If f is in M , or it is id, ω, or a projection map πi, then | f |M = 1.

b) Otherwise, f is either a concatenation or a product of some maps in ⟨M ⟩. In this case,
| f |M is 1 plus the minimum of the sum of the size of component maps relative to M ,
among all possible combination, i.e.,

i) if f ∈ ⟨M ⟩ is a concatenation,

| f |M = 1 + min
g,h∈⟨M ⟩

f=g ◦ h

(|g|M + |h|M ),

ii) if it is a product,

| f |M = 1 + min
f1,··· , fn∈⟨M ⟩
f= f1×···× fn

(| f1|M + · · · + | fn|M ),

Definition 10. Let MS be a set of maps. A diagram (S ,S ′,M ) is said to be generated
by MS if each map in M is either

a) the power map f : 2X → 2Y of a map f : X → Y in ⟨MS⟩ or

b) the inverse map f −1 : 2Y → 2X of a map f : X → Y in ⟨MS⟩.

Definition 11. Let MS be a set of maps. A diagram (S ,S ′,M ) is said to be generated
by MS with complement if each map in M is either

a) the power map f : 2X → 2Y of a map f : X → Y in ⟨MS⟩,

b) the inverse map f −1 : 2Y → 2X of a map f : X → Y in ⟨MS⟩, or

32



c) a complement map cmpl : 2X → 2X for a set X in S .

Definition 12. Let MS be a set of maps and (S ,S ′,M ) a diagram generated by MS with
or without complement. For a map φ in M , its size |φ|MS relative to MS is defined as
follows:

a) if φ = cmpl, |φ|MS = 1.

b) If φ = f or φ = f −1 with f ∈ ⟨MS⟩, then |φ|MS = | f |MS .

In the case of the circle example (5), the diagram is generated by MS = {len, sub} and
each map in the diagram has the size 1 relative to MS. The diagram (6) for line is generated
by {sub,mult}.

5.2 Definition
We would like to define a measure of structural information of a subset A ⊂ X relative to a
fixed set MS of structure maps by considering all data (S ,S ′,M ,T , t, X) that represents
A and such that the diagram (S ,S ′,M ) is generated by MS, and then taking the minimum
of the total size of the maps appearing in such diagrams. However, such a measure is not
very useful without any restriction, since for any A ⊂ X and any MS, such minimum is
zero because of the trivial representation in which S = T = {X},M = ∅, and t is defined
by t(X) = A.

To remedy this problem, we balance the data supplied by the partial cross section with
their Shannon information[12].

Definition 13. Let X be a set, A its subset, and MS a set of maps. Also, let P be a set
of probability spaces, each space Y ∈ P with a probability measure PY . We define the
structural information I(A |MS,P) of A relative to MS and P as the minimum of∑

φ∈M
|φ|MS −

∑
T∈T

log2 PT (t(T ))

among all data (S ,S ′,M ,T , t, X) representing A such that (S ,S ′,M ) is a diagram
generated by MS, each set in T is in P , and t(T ) is a measurable subset of each T ∈ T . If
there does not exist such a diagram with which the sum is finite, we define I(A |MS,P) =
∞. We define the measure Ic(A |MS,P) with complement similarly except that we allow
diagrams generated by MS with complement.

Imagine that X is itself a probability space and X ∈ P . Then the existence of trivial
representation gives the upper bound:

I(A |MS,P) ≤ − log2 PX(A).
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In general, the sets in T can be thought of as parameter spaces, and the Definition 13
allows for the treatment of information in an ensemble of objects, just like Shannon in-
formation but taking the structure into account. However, in this paper, we focus on the
information in an individual object. Thus, for the rest of this paper, we only consider the
special case of I(A |MS,P) with P = {1}, making 1 a probability space with the prob-
ability measure P1 defined by P1(∅) = 0, P1(1) = 1. That is, we require T = {1} and
t(1) = 1.

Definition 14. The structural information measures I(A |MS) and Ic(A |MS) are defined
as I(A |MS,P) and Ic(A |MS,P) with P = {1}, respectively.

For instance, the diagram for circle (5) can be modified to:

1(1)
r // R(2)

len−1
// V(3)

sub−1

��
1(4)

p // X(5)
π2
−1

// X × X(6)
π1 // X(7)

The constants r ∈ R and p ∈ X are identified with the maps r : 1→ R and p : 1→ X with
values r(0) = r ∈ R and p(0) = p ∈ X (see 2.2.) Remember that we omit the 1 in diagrams.
Thus the diagram for line (6) can be modified thus:

V(1)
π1
−1

//

v
��

V × R(2)

sub−1 ◦mult
��

X(3)
π2
−1

//

p
��

X × X(4)
π1 // X(5)

The diagram is generated by MS = {p, v, sub,mult}. The map sub−1 ◦ mult is actually not
in ⟨MS⟩. However, in general, if we have φ : 2S → 2T and ψ : 2T → 2U , we can always

think of S
ψ ◦φ // U as an abbreviation of S

φ // T
ψ // U .

This way, visual patterns such as shown in Figure 1 and 3, as well as explained in
Section 3, can be shown to have finite information. The circle C has the upper bound
of I(C |{r, p, len, sub}) ≤ 6, while the line L has I(L |{p, v, sub,mult}) ≤ 7. When we talk
about Euclidean space, we should include all maps that characterize the space X and related
spaces of R,V , which would include len, sub,mult and also any constants. Thus, the proper
set of maps to estimate the structural information of subsets of Euclidean space would be
something like ME = {len, sub,mult} ∪ X ∪ V ∪ R. The above estimates for the circle and
line cases are unchanged: I(C |ME) ≤ 6, I(L |ME) ≤ 7.

6 Relation to Kolmogorov Complexity
In this section, we show that the information measure defined in the previous section gen-
eralizes Kolmogorov complexity. Here, we are only concerned with binary strings; an
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extension to other alphabet should be straightforward. For a Turing machine M with bi-
nary alphabet, let the partial function defined by M be denoted by the same letter. Also, let
|σ| denote the length of the string σ.

Definition 15. The Kolmogorov complexity KU(σ) of a binary string σ ∈ 2∗ with respect
to a universal Turing machine U is defined as

KU(σ) = min
p∈2∗,U(p)=σ

|p|.

6.1 Emulating Turing Machines
It turns out that any Turing machine can be emulated by a diagram generated by MN =

{0, succ}, where succ : N → N is the successor function and 0 : 1 → N, if we represent a
binary string σ ∈ 2∗ by the subset

σ̄ = {(i, σ[i]) | i = 0, 1, · · · , |σ| − 1} ∪ {(|σ|, 0), (|σ|, 1)} ⊂ N × N.

Theorem 1. Let M be a Turing machine with binary alphabet. Then there exists a finite
diagram (S ,S ′,M ) generated by MN = {0, succ} and two sets S = N×N and T = N×N
in S such that (S ,S ′,M , {1}, s1, S, T ) represents the map M̄ : 2N×N → 2N×N that maps
σ̄ to τ̄ if M accepts σ leaving a string τ on its tape, or to ∅ if M rejects σ or does not
terminate with input σ.

Proof. Let M = (Q, 2,Θ, , δ, q0, qA, qR), where Q is the finite set of states,Θ is the finite set
of internal symbols such that 2 ⊂ Θ, ∈ Θ is the blank symbol, δ : Θ×Q→ Θ×Q×2 is the
transition function, and q0, qA, qR ∈ Q are the initial, accept, and reject states, respectively.
We define Q̃ = Q + {qe} and Θ̃ = Θ + {�}. Consider the following diagram (S ,S ′,M ):

N × N(1)
init _? N × Θ̃ × Q̃ × N(2)

δ∗

?�

id // N × Θ̃ × Q̃ × N(3)
θ ◦ π12 //

π3
−1 ◦ qA

��
N × N(4)

(20)

Here, S2 is meant to represent the whole execution history of the Turing machine M.
Let us assume that σ is a binary string and s is a cross section in Γ(S ,S ′,M | s1)

with s(S1) = σ̄. For k ∈ N, let us call the set Rk = {(i, x, q, k) ∈ s(S2) | (i, x, q) ∈ N× Θ̃× Q̃}
the k’th row. We call the Rk proper if the following condition holds:

Rk = R1
k + R2

k;

R1
k = {(i, xik, qe, k) | i = 0, · · · , lk}, xlkk = �, xik , � for i < lk;

R2
k = {(i, xik, qk, k) | i = mk, · · · , nk}, qk , qe, 0 ≤ mk ≤ nk ≤ lk; if qk , qA then mk = nk.

In a proper row, xik represents the i’th symbol on the tape at k’th step in execution of
M, except for the last entry in the row, which is �. When qk , qA, the single element
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(mk, xmkk, qk, k) in R2
k indicates that M is in state qk and its head is at position mk. When

qk = qA it means that the machine is in the accept state.
The map init sends the subset σ̄ to

init(σ̄) = {(i, σ[i], qe, 0) | i = 0, · · · , |σ| − 1} ∪ {(|σ|,�, qe, 0)} ∪ {(0, σ[0], q0, 0)}, (21)

setting up the 0’th row properly.
The map δ∗ : 2N×Θ̃×Q̃×N → 2N×Θ̃×Q̃×N maps Rk to Rk+1 with the following properties:

1. If Rk is proper and qk , qA, δ∗ updates the configuration by emulating M, i.e., R1
k is

copied to R1
k+1 except that xmkk is mapped to xmkk+1 according to M’s tape rewriting,

and that the single element (mk, xmkk, qk, k) of R2
k is mapped to (mk+1, xmk+1k, qk+1, k+1)

in R2
k+1, where mk+1 is the position of the head at step k + 1.

2. If k’th row is proper and qk = qA, R1
k is copied to R1

k+1 and R2
k is expanded. That is, if

R2
k = {(i, xik, qA, k) | i = mk, · · · , nk},

then
R2

k+1 = {(i, xik, qA, k) | i = max(0,mk − 1), · · · ,min(lk, nk + 1)}.

In Lemma 6, we show that such a δ∗ can be represented using a subdiagram. If we define a
grading map g : N × Θ̃ × Q̃ × N → N by g((i, x, q, k)) = k, it is clear from the proof of the
lemma that δ∗ satisfies the requirement of Proposition 1, which is

δ∗(Si) ⊂ Si+1, δ∗(S) =
∞∪

n=0

δ∗(Sn),

where S = N × Θ̃ × Q̃ × N and Si = g−1(i). Thus from the proposition we have

s(S2) =
∞∪

k=0

δ∗k(init(s(S1)))

We then have the following:

s(S3) = {(i, x, q, k) ∈ s(S2) | q = qA}.

If M reaches the accept state at k’th step, R2
k would have one element with the accept state

qA. The rows after that would have increasingly more qA without changing the symbols,
until R2

k′ = {(i, xik, qA, k′) | i = 0, · · · , lk}. The map θ : 2N×Θ̃ → 2N×N just fixes the
termination of the string, removing the blank symbols that might be left at the end of the
string and properly terminating:

θ(A) ={(i, x) | (i, x), (i + 1, y) ∈ A, x, y ∈ 2} ∪ {(0, 0), (0, 1) | (0, y) ∈ A, y ∈ B}∪
{(i, x), (i + 1, 0), (i + 1, 1) | (i, x), (i + 1, y) ∈ A, x ∈ 2, y ∈ B}, (22)
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where B = { ,�}. The second part of the RHS is to take care of the case when the string
is empty. Thus, s(S4) contains the string that remains when M reaches the accept state if it
does, and is empty if it does not.

Without loss of generality, we can assume that Q = n, qe = n and Θ = m,� = m.
Remember, in our notation, the finite subset {0, 1, · · · , n − 1} of N is denoted by n. Thus,
constant maps such as qe, q0 are natural number constants. Any natural number constant
map k can be made from 0 and succ as succk ◦ 0.

It remains to prove that the maps init, θ, and δ∗ can be represented by a diagram gener-
ated by MN, which is done in the following lemmas. �

Lemma 1. The map init : 2N×N → 2N×Θ̃×Q̃×N that satisfies (21) can be represented by a
diagram generated by MN.

Proof. Consider the diagram

N × N(1)

(id×1)−1

��
(id×0)−1

��

π1×qe

O/

id
//

π1
−1 ◦ succ−1 ◦ π1 // N × N(2)

id
?�

N × Q̃(3)
0×q0

/�

π13
−1

��
N(4)

id×� _? N × Θ̃(5)
π12
−1

// N × Θ̃ × Q̃ × N(6)

π4
−1 ◦ 0

��

Let σ be a binary string and s a cross section of the diagram such that s(S1) = σ̄ =
{(i, σ[i]) | i = 0, 1, · · · , |σ| − 1} ∪ {(|σ|, 0), (|σ|, 1)}. Then

s(S2) = {(i, x) | (i + 1, x′) ∈ s(S1), x′ ∈ 2, (i, x) ∈ s(S1)} = {(i, σ[i]) | i = 0, · · · , |σ| − 1},
s(S3) = {(i, qe) | (i, x) ∈ s(S1), x ∈ 2} ∪ {(0, q0)} = {(i, qe) | i = 0, · · · , |σ|} ∪ {(0, q0)},
s(S4) = {i ∈ N | (i, 0), (i, 1) ∈ s(S1)} = {|σ|},
s(S5) = {(i, σ[i]) | i = 0, 1, · · · , |σ| − 1} ∪ {(|σ|,�)},
s(S6) = {(i, σ[i], qe, 0) | i = 0, · · · , |σ| − 1} ∪ {(|σ|,�, qe, 0)} ∪ {(0, σ[0], q0, 0)}.

Thus, s(S6) is the result of applying init to s(S1). �

Lemma 2. The map θ : 2N×Θ̃ → 2N×N that satisfies (22) can be represented by a diagram
generated by MN.

Proof. Consider the diagram

N × Θ̃(1)

(succ ◦ π1)×π2

?�

π13
−1

// N × Θ̃ × Θ̃(2)
id //

id

''

N × Θ̃ × Θ̃(3)

α

T4

π1×0

_?

π1×1

O/

Θ̃ × Θ̃(4)

(0, )
4�

(1, )
4�

(0,�)
� �

(1,�)� u

π23
−1

oo

N × Θ̃(5)

π12
−1

77

(0,0)

 j

Θ̃ × Θ̃(6)

(0,0)
4�

(0,1)
4�

(1,0)

 j

(1,1)

 j

π23
−1

// N × Θ̃ × Θ̃(7) α
_? N × N(8)
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Here, α = ((succ◦π1)×π2)−1◦π12. Then, for a cross section s of the diagram with s(S1) = A,

s(S5) ={(i + 1, x) | (i, x) ∈ A} ∪ {(0, 0)},
s(S2) ={(i + 1, x, y) | (i, x), (i + 1, y) ∈ A} ∪ {(0, 0, y) | (0, y) ∈ A},
s(S4) ={(x, y) | x ∈ 2, y ∈ B},
s(S3) ={(i, x, y) ∈ s(S2) | x ∈ 2, y ∈ B}

={(i + 1, x, y) | (i, x), (i + 1, y) ∈ A, x ∈ 2, y ∈ B} ∪ {(0, 0, y) | (0, y) ∈ A, y ∈ B},
s(S6) ={(x, y) | x, y ∈ 2},
s(S7) ={(i, x, y) ∈ s(S2) | x, y ∈ 2}

={(i + 1, x, y) | (i, x), (i + 1, y) ∈ A, x, y ∈ 2} ∪ {(0, 0, y) | (0, y) ∈ A, y ∈ 2}
s(S8) ={(i, x), (i + 1, 0), (i + 1, 1) | (i, x), (i + 1, y) ∈ A, x ∈ 2, y ∈ B}∪

{(0, 0), (0, 1) | (0, y) ∈ A, y ∈ B} ∪ {(i, x) | (i, x), (i + 1, y) ∈ A, x, y ∈ 2},

where B = { ,�}. Thus, s(S8) is the result of applying θ to s(S1). �

Lemma 3. Let δ be a map from m×n to m×n×2. Then δ can be represented by a diagram
generated by MN.

Proof. Let k be the larger of n and m. The diagram has three parts: SA,i = N for i =
0, · · · , k−1; SB,i, j = m× n×m× n× 2 for (i, j) ∈ m× n; and SC,0 = m× n, SC,1 = m× n× 2.

The first part is as follows:

N(A,0)

0
��

succ // N(A,1)
succ // · · · succ // N(A,k−1)

This part has no incoming arrows from other parts. Thus, any cross section s has s(SA,i) =
{i} for i = 0, 1, · · · , k − 1.

The other parts are organized thus:

m× n(C,0)
π12
−1

//

π12
−1

''

m× n× m× n× 2(B,0,0)

π345

T4

...

m× n× m× n× 2(B,m−1,n−1)
π345 _? m× n× 2(C,1)

with maps, for each (i, j) ∈ m× n, as follows:

N(A,i)
π1
−1

// m× n× m× n× 2(B,i, j) N(A,δ1(i, j))
π3
−1

oo

N(A, j)

π2
−1

44

N(A,δ2(i, j))

π4
−1

OO

N(A,δ3(i, j))

π5
−1

jj
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where δ(i, j) = (δ1(i, j), δ2(i, j), δ3(i, j)).
Let s be a cross section of this diagram. Then for each (i, j) ∈ m× n,

s(SB,i, j) = π12
−1(s(SC,0)) ∩ π1

−1(s(SA,i)) ∩ π2
−1(s(SA, j))

∩ π3
−1(s(SA,δ1(i, j))) ∩ π4

−1(s(SA,δ2(i, j))) ∩ π5
−1(s(SA,δ3(i, j)))

= {(i, j, δ1(i, j), δ2(i, j), δ3(i, j)) ∈ m× n× m× n× 2 | (i, j) ∈ s(SC,0)}

=

{(i, j, δ1(i, j), δ2(i, j), δ3(i, j))} if (i, j) ∈ s(SC,0)
∅ if (i, j) < s(SC,0)

and thus

s(SC,1) =
∪

(i, j)∈s(SC,0)

π345(s(SB,i, j))

= {δ(i, j) | (i, j) ∈ s(SC,0)} = δ(s(SC,0)).

�

Lemma 4. The map ψ : 2N×Θ̃×Q×2×N → 2N×Q×N defined by

ψ(A) = {(0, q, k) | (0, x, q, 0, k) ∈ A}
∪ {(i + 1, q, k) | (i, x, q, 1, k) ∈ A} ∪ {(i, q, k) | (i + 1, x, q, 0, k) ∈ A}

can be represented by a diagram generated by MN.

Proof. Consider the diagram

N × Q × N(3)

(succ◦π1)×π23

��
N × Θ̃ × Q × 2 × N(1)

π1345 // N × Q × 2 × N(2)

(π12×1×π3)−1
44

((succ◦π1)×π2×0×π3)−1
//

(0×π1×0×π2)−1

**

N × Q × N(4)

Q × N(5)

0×π12

OO

Then we have

s(S2) = {(i, q, v, k) | (i, x, q, v, k) ∈ s(S1)},
s(S3) = {(i, q, k) | (i, x, q, 1, k) ∈ s(S1)},
s(S5) = {(q, k) | (0, x, q, 0, k) ∈ s(S1)},
s(S4) = {(i + 1, q, k) | (i, x, q, 1, k) ∈ s(S1)} ∪ {(i, q, k) | (i + 1, x, q, 0, k) ∈ s(S1)}

∪ {(0, q, k) | (0, x, q, 0, k) ∈ s(S1)}.

Thus we have s(S4) = ψ(s(S1)). �
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Lemma 5. The map χ : 2N×N → 2N×N such that

χ({(i, k)}) = {( j, k) | j ∈ N, j , i}

can be represented by a diagram generated by MN.

Proof. Consider the diagram

N × N(1)
s1 _?

s2

?�

N × N(2)

id
?�

s1� o

N × N(3)
id _?s2 oO
N × N(4)

Here, s1 = (succ ◦ π1) × π2 and s2 = ((succ ◦ π1) × π2)−1. Then if s(S1) = {(i, k)},

s(S2) = {( j, k) | j = i + 1, i + 2, · · · },
s(S3) = {( j, k) | j = i − 1, i − 2, · · · , 0},
s(S4) = {( j, k) | j ∈ N, j , i}.

�

Lemma 6. The map δ∗ : 2N×Θ̃×Q̃×N → 2N×Θ̃×Q̃×N with the properties in the proof of the
theorem can be represented by a diagram generated by MN.

Proof. Consider the diagram:

N × Θ̃ × Q̃ × N(1)
π123×(succ ◦ π4) //

π123×(succ ◦ π4)

��

N × Θ̃ × Q̃ × N(2)
π1×(δ ◦ π23)×π4 //

χ ◦ π14

��

π3
−1 ◦ (Q̃\{qe,qA})

WW
N × Θ̃ × Q̃ × 2 × N(3)

ψ

0�

π125

?�

N × Θ̃ × Q̃ × N(4)

π134

��

π124

))

π3
−1 ◦ {qe,qA}��

N × N(5)

π13
−1

��

N × Θ̃ × N(6)

π124
−1

��
N × Q̃ × N(7)

ϕ

��

π2
−1 ◦ qA��

N × Θ̃ × N(8)

id

hH

N × Θ̃ × Q̃ × N(9)

η

��
N × Q̃ × N(10)

id _? N × Q̃ × N(11)

π134
−1

55

π2
−1 ◦ qe

J*

N × Θ̃ × Q̃ × N(12)

For k ∈ N, let us assume that s(S1)’s k’th row Rk is proper. We see that s(S2) contains the
single element (i, x, q, k), q , qA in R2

k and s(S4) the rest, with the step number k incre-
mented. Note that {qe, qA} and Q̃ \ {qe, qA} in the diagram denotes the constant union maps
1→ Q̃ whose images are {qe, qA} and Q̃ \ {qe, qA}.
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The map χ ◦ π14 sends to

s(S5) =
∪

(i,x,q,k)∈s(S2)

{( j, k) | j , i}.

Thus, s(S5) contains exactly the position-step pair (i, k) such that there is no element
(i, x, q, k) in s(S2). The element (i, x, q, k) in R2

k indicates that the head is at position i
on step k. Thus s(S5) contains the position-step pair everywhere except where the head is,
and s(S8) contains the symbols that are not under the head.

The symbol-state pair (x, q) from (i, x, q, k) in R2
k is fed to δ and the result is

s(S3) = {(i, x′, q′, v, k) | (i, x, q, k) ∈ s(S2), δ((x, q)) = (x′, q′, v)},

which contains the symbol x′ to replace the one at the current position i, the new state q′,
and the direction v to move the head. The new symbol is sent to s(S6) where it is combined
with the symbols that are not changed, which are contained in s(S8). The direction to move
the head is indicated by v: if v = 0, the head is to be moved to the left, and if v = 1 to the
right. The map ψ in Lemma 4 is defined so that the position is moved accordingly, while
also taking care of the case (i, v) = (0, 0), when the head is indicated to move to the left
and the position is 0, and therefore has to stay at 0. Also, without loss of generality, we
can assume that δ satisfies δ((x, qR)) = (x, qR, 0), which makes the simulated head to move
to the left without changing any symbol after the rejection state is reached, until it reaches
the leftmost position, where it stays.

Coming back to s(S4),

s(S7) = {(i, qA, k) | (i, x, qA, k) ∈ s(S4)},

takes position-step pairs with state qA. The map ϕ : 2N×Q̃×N → 2N×Q̃×N is defined so that

s(S10) = ϕ(s(S7)) = {(i, qA, k) | (i + 1, qA, k) ∈ s(S7)}
∪ {(i, qA, k) | (i, qA, k) ∈ s(S7)}
∪ {(i + 1, qA, k) | (i, qA, k) ∈ s(S7)},

which propagates the positions with accept state qA. This can be represented by

N × Q̃ × N id _?

((succ ◦ π1)×π23)−1

O/

(succ ◦ π1)×π23

oO
N × Q̃ × N

Now, the position-state-step triples are combined in s(S11):

s(S11) = ψ(s(S3)) ∪ s(S10) ∪ {(i, qe, k) | i, k ∈ N},

where the last part ensures that the state qe is in R1
k everywhere there is a symbol.
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The states and the symbols are combined in s(S9): which is combined with the symbols
to make

s(S9) = {(i, x, q, k) | (i, x, k) ∈ s(S6), (i, q, k) ∈ s(S11)}.
Finally, the map η : 2N×Θ̃×Q̃×N → 2N×Θ̃×Q̃×N takes care of the case when the head moves

past the right end of the string:

η((i,�, q, k)) = {(i, , q, k), (i + 1,�, qe, k)}, (q , qe, q , qA),
η((i, x, q, k)) = {(i, x, q, k)} otherwise.

This can be represented by:

N × Θ̃ × Q̃ × N id //

id

++
id

&&

N × Θ̃ × Q̃ × N
π1× ×π34 _?

(succ ◦ π1)×�×qe×π4

_?

π23
−1 ◦ (�×(Q̃\{qe,qA}))

��

N × Θ̃ × Q̃ × N

N × Θ̃ × Q̃ × N
id

fF

π2
−1 ◦ (Θ̃\{�})

��

N × Θ̃ × Q̃ × N

id

kK

π3
−1 ◦ {qe,qA}

LL

�

Theorem 2. For any universal Turing machine U, there exists a constant cU ∈ N such that

I(σ̄ |MN) ≤ 6KU(σ) + cU

for any binary string σ ∈ 2∗.

Proof. By Theorem 1, there exists a diagram (S ,S ′,M ) generated by MN that emulates
U. By definition, there exists p ∈ 2∗ such that U(p) = σ and |p| = KU(σ). There are sets
S = N × N and T = N × N in S , as S1 and S4 in (20), such that s(T ) = σ̄ if s(S) = p̄, for
any cross section s of (S ,S ′,M | s1). Add to the diagram the following:

N(A,0)

0
��

succ // N(A,1)
succ // · · · succ // N(A,|p|)

with maps from SA,i to S:

N(A,i)
id×p[i]

_? N × N
for i = 0, 1, . . . , |p| − 1, where id× p[i] : N→ N×N denotes the map id× 0 if p[i] = 0 and
id × (succ ◦ 0) if p[i] = 1. Finally, we add maps

N(A,|p|)
id×0 _?

id×1
_? N × N
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from SA,|p| to S. Then any cross section s of the resulting diagram satisfies s(S) = p̄, and
thus s(T ) = σ̄.

Maps succ and id × p[i] is added for each symbol in p. The size of succ is 1 and that
of id × (succ ◦ 0) is 5. Thus the size of the added diagram is at most 6|p| + const. Since
the only part of the diagram that depends on σ is the part added here, the existence of this
diagram proves the theorem. �

Corollary 1. For any binary string σ ∈ 2∗, I(σ̄ |MN) is bounded from above by

c · min
M:TM,p∈2∗

M(p)=σ

(|p| + |ΘM ||QM |),

where c is a constant and ΘM and QM are the sets of internal symbols and states of Turing
machine M, respectively.

Proof. Use the same construction as in the proof of Theorem 2 with any (possibly non-
universal) Turing machine. It can be seen from the proof of the theorem and Lemma 3 that
the size of the diagram emulating a Turing machine M is O(|ΘM ||QM |). �

6.2 Reading Cross Section
Conversely, if a finite diagram generated by MN can represent σ̄ for some binary string σ,
there is a Turing machine that produces σ and terminate.

Let X be a set of Boolean variables, i.e., variables that take values in 2. We use the
standard notion like logical AND (∧) and OR (∨), treating 1 as true and 0 as false. By
an assignment to X, we mean a map f : X → 2, which assigns 0 or 1 to each variable
in X. If Y ⊂ X, there is a natural map 2X → 2Y by restriction that maps an assignment
to X to an assignment to Y . A logical constraint χ on a set X of Boolean variables is a
map χ : 2X → 2, which is said to be satisfied by an assignment f ∈ 2X to X if χ( f ) = 1.
For a logical constraint χ on X, an assignment g to a subset Y of X is said to satisfy χ if
every assignment that restricts to g satisfies it. For a set C of constraints on X, we say an
assignment to X satisfies C if it satisfies all the constraints in C.

Theorem 3. Let (S ,S ′,M ) be a finite diagram generated by MN such that the data
(S , S ′, M , {1}, s1, S) represents σ̄ ⊂ S = N × N for a binary string σ, where s1 is the
cross section of {1} defined by s1(1) = 1. Then there exists a Turing machine that takes
an encoded description of any such diagram and produces σ. Therefore, for any universal
Turing machine U, there exist constants dU , eU ∈ N such that

KU(σ) ≤ dU I(σ̄ |MN) + eU

for any binary string σ ∈ 2∗.
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Proof. For each element t of each set T in S , we define a Boolean variable xt. Also,
for each set T in S , each map φ ∈ in(T ), and each element t of T , we define a Boolean
variable yφt . Let us denote the set of the variables by X. The variable xt is for indicating
if t is in the cross section, and yφt is to indicate if t is in the image of the cross section by
φ. We define a set C of constraints on X to establish a one-to-one correspondence between
the cross sections in Γ(S ,S ′,M | s1) and the assignments to X satisfying C. We let C
contain the following constraints:

i) For each map φ ∈M :

a) If φ is the power map f : 2U → 2T of f : U → T , C contains the constraint yφt = 0
for each t ∈ T \ f (U) and, for each t ∈ f (U),

yφt =
∨

u∈ f −1(t)

xu.

b) If φ is the inverse map f −1 : 2U → 2T of f : T → U, C contains the constraint

yφt = x f (t)

for each t ∈ T .

ii) For each set T in S \S ′ such that in(T ) , ∅ and each t in T , C contains the constraint

xt =
∧

φ∈in(T )

yφt .

iii) For each set T in S ′ such that in(T ) , ∅ and each t in T , C contains the constraint

xt =
∨

φ∈in(T )

yφt .

iv) For the variable x0 corresponding to the element 0 ∈ 1 that appears in the data
(S ,S ′,M , {1}, s1, S), C contains the constraint x0 = 1.

Note that for each variable x ∈ X, there is exactly one constraint in C with that variable
on the LHS. We call it χx. Note also that any conjunction in C has only a finite number
of variables and that there are only countably many variables in X. We fix a one-to-one
correspondence ν : X → N for later use.

For a cross section s of S , we define an assignment gs to X by defining gs(xt) = 1 if
and only if t ∈ s(T ) for each T ∈ S , t ∈ T and gs(y

φ
t ) = 1 if and only if t ∈ φ(s(dm(φ))).

Then gs satisfies C if and only if s is a cross section in Γ(S ,S ′,M | s1), as follows.
First, suppose that gs satisfies C. If T ∈ S \S ′, then gs(xt) =

∧
φ∈in(T ) gs(y

φ
t ) and thus

t ∈ s(T ) (i.e., gs(xt) = 1) if and only if t ∈ ∩φ∈in(T ) φ(s(dm(φ))). If T ∈ S ′, then gs(xt) =
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∨
φ∈in(T ) gs(y

φ
t ); thus t ∈ s(T ) (i.e., gs(xt) = 1) if and only if t ∈ ∪φ∈in(T ) φ(s(dm(φ))).

This proves that s is in Γ(S ,S ′,M ). Finally, the constraint gs(x0) = 1 for the vari-
able x0 corresponding to the element 0 ∈ 1 ensures that s(1) = 1, and thus s is in
Γ(S ,S ′,M | s1). Conversely, suppose that s is in Γ(S ,S ′,M | s1). If T ∈ S \S ′,
gs(xt) = 1 (i.e., t ∈ s(T )) if and only if t ∈ ∩φ∈in(T ) φ(s(dm(φ))); since gs(y

φ
t ) = 1 if and

only if t ∈ φ(s(dm(φ))), gs(xt) =
∧

φ∈in(T ) gs(y
φ
t ). If T ∈ S ′, gs(xt) = 1 (i.e., t ∈ s(T )) if and

only if t ∈ ∪φ∈in(T ) φ(s(dm(φ))); thus gs(xt) =
∨

φ∈in(T ) gs(y
φ
t ). Finally, gs(x0) = 1 is satisfied

since s(1) = 1.
We define a subset Xi of X for i ∈ N by

X0 = {x0},
Xi+1 = Xi ∪ {x ∈ X | x is forced by Xi}.

Here, a variable x ∈ X is said to be forced by a subset Y of X either if χx is a disjunction
and at least one variable on its RHS is in Y or if χx is a conjunction and all the variables on
its RHS is in Y . Note that, if an assignment g to X satisfies C, g(x0) = 1 and, by following
the definition, any variable x in Xi has g(x) = 1.

We define a function τ on X:

τ(x) =

i if x ∈ Xi \ Xi−1

∞ otherwise

and using τ, we define an assignment h to X by:

h(x) = 1 ⇐⇒ τ(x) < ∞.
Then h satisfies C. To see this, assume that there is a constraint χ ∈ C that is not satisfied
by h. If χ is of the form x = ∧y j with a finite number of y j’s, either h(x) = 1 and h(y j) = 0
for some y j, or h(x) = 0 and h(y j) = 1 for all y j. Neither is possible by the definition of
h: if h(y j) = 0 for some y j, τ(y j) = ∞ and thus τ(x) = ∞; if τ(y j) < ∞ for all y j, then all
y j’s are in Xk, where k is the maximum of τ(y j), and thus τ(x) = k + 1. If χ is of the form
x = ∨y j, either h(x) = 1 and h(y j) = 0 for all y j, or h(x) = 0 and h(y j) = 1 for some y j.
These are not possible either: if h(y j) = 0 and thus τ(y j) = ∞ for all y j, then τ(x) = ∞; if
h(y j) = 1 for some y j, τ(y j) < ∞ and τ(x) ≤ τ(y j) + 1.

For any x in X with τ(x) < ∞, define a finite subset Yx of Xτ(x) as follows:

x ∈ Yx,

y ∈ Yx, χy = “y = ∧y j” ⇒ ∀y j ∈ Yx,

y ∈ Yx, χy = “y = ∨y j” ⇒ arg min
y j,τ(y j)<τ(y)

ν(y j) ∈ Yx.

Since only a finite number of variables appear in any conjunction in C, for a variable y
already in Yx, each rule adds at most a finite number of variables y j, which all satisfies
τ(y j) < τ(y). Thus there are only a finite number of variables in Yx. Also, if we denote
Y i

x = Yx ∩ Xi, each variable in Y i
x is forced by Y i−1

x for i = 1, · · · , τ(x).
Consider the following algorithm:

45



IsOne(x)
1 for each increasingly large finite subset Z ⊂ X such that x0, x ∈ Z
2 Y0 ← {x0}
3 for i = 1, 2, · · ·
4 Yi ← Yi−1

5 for each z ∈ Z
6 add z to Yi if z is forced by Yi−1

7 until Yi = Yi−1

8 until x ∈ Yi for some i

On line 1, we make sure the increasing subset Z will contain each variable eventually by
adding variable ν−1(k) for k = 0, 1, 2, · · · .

If τ(x) < ∞, IsOne(x) terminates in finite steps, since Z will eventually include Yx.
Conversely, if IsOne(x) terminates in finite steps, the set Yi that contains x is a subset of Xi.
Thus τ(x) < ∞.

Let us assume s ∈ Γ(S ,S ′,M | s1). Since the data (S , S ′, M , {1}, s1, S) represents
σ̄ ⊂ S = N × N, any cross section s′ in Γ(S ,S ′,M | s1) satisfies s′(S) = σ̄. Thus, for
any assignment g to X that satisfies C, g(t) = gs(t) for any t ∈ S. In particular, we have
h(t) = gs(t) for any t ∈ S. This means that τ(x(i,b)) < ∞ for (i, b) ∈ S if and only if σ[i] = b.

Now, we define a Turing machine M that executes the following algorithm:

1 Given (S ,S ′,M , {1}, s1, S)
2 Let ρ be an empty string variable
3 for i = 0, 1, · · ·
4 run IsOne(xt) in parallel for t = (i, 0), (i, 1), and (i − 1, 1 − ρ[i − 1]) if i > 0.
5 until one of the parallel processes terminates
6 if i > 0 and IsOne(x(i−1,1−ρ[i−1])) terminated
7 then pop ρ[i − 1] and terminate returning ρ
8 else if IsOne(x(i,0)) terminated
9 then ρ[i]← 0

10 else if IsOne(x(i,1)) terminated
11 then ρ[i]← 1

For i = 0, 1, · · · , |σ| − 1, IsOne(x(i,σ[i])) terminates in finite steps but the other processes do
not. For i = |σ|, either IsOne(x(i,0)) or IsOne(x(i,1)) can terminate first. For i = |σ| + 1, only
IsOne(x(i−1,1−σ[i−1])) terminates. Thus, M always terminates returning σ.

Finally, let (S ,S ′,M , {1}, s1, S) be the diagram that has size I(σ̄ |MN). Since the data
can be encoded in a string of length O(I(σ̄ |MN)) and emulating M on U to run on the
string produces σ, there are constants dU , eU ∈ N such that

KU(σ) ≤ dU I(σ̄ |MN) + eU

that do not depend on σ. �
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By Theorem 2 and Theorem 3, we can say that I(σ̄ |MN) is equivalent to the Kol-
mogorov complexity KU(σ). Thus, the formulation gives the larger class of objects a
meaningful measure of information that generalizes Kolmogorov complexity.

7 Discussion and Conclusion
How is the information measure we defined different from Kolmogorov complexity in the
general case, not the case in the previous section? Let us take the class G of subsets of
Euclidean plane X as an example and try to follow the common prescription: that is, we
fix an encoding of the objects into strings; and then we define the Kolmogorov complexity
of the string encoding an object as its complexity. Consider

S
U−→ S

f ′−→ G (23)

where S is the set of all strings and U is the partial map defined by a universal Turing
machine. The map f ′ is an encoding of objects by strings. The common notion is that we
should define the length of the shortest string s such that x = f ′(U(s)) as the Kolmogorov
complexity of x. However, as we mentioned in 1.1, because the cardinality of G is larger
than that of S, we need to either encode only some of the objects, encode multiple objects
by each string, or both. To allow for both possibilities, we consider

S
U−→ S′

f←− G (24)

instead. Here, S′ = S + {↑}, where f (x) = ↑ means “x is not encoded.” For an object x, the
length of the shortest string s such that f (x) = U(s) is defined as the amount K f ,U(x) of
information in x, unless f (x) = ↑, in which case K f ,U(x) = ∞.

The question is: does there exist a map f that makes K f ,U(x) equivalent to I(x |ME)?
The trivial answer is: yes, we can define f using I(x |ME). If I(x |ME) is finite, we define
f (x) to be the first string s (in some standard order) such that the shortest string s′ with
U(s′) = s has length I(x |ME); otherwise we define f (x) = ↑. But this only highlights the
meaninglessness of this kind of discussion without restricting f in some way: as we noted
in the introduction, just about any “complexity” can be realized this way.

Let us instead try to define a reasonable encoding f to see if it gives rise to anything
close to I(x |ME). First, a standard way to encode points in X would be to identify X with
R2 and encode the two coordinates of a point by an infinite sequence. We can also encode
a countable set of points by a sequence similarly by dovetailing between more and more
points, enumerating the digits for each to higher and higher precision. To accommodate
this, we again modify (24) a little and consider

S
Ũ−→ S̃

f̃←− G (25)
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Here, S̃ is the set of all infinite sequences. If a sequence s is computable, there is a Turing
machine that, given a natural number n, prints the first n symbols of s and halts. Let Ũ
be the partial map that maps an encoding of such a Turing machine to the sequence. We
define the length of the shortest string s′ such that Ũ(s′) = f̃ (x) as K f̃ ,Ũ(x). If there is no
such string s′, we define K f̃ ,Ũ(x) = ∞. Note that this particular scheme is already quite
different from ours. According to this scheme, the information in a single point varies in
a way irrelevant to anything we may be interested in while thinking about subsets of a
Euclidean plane. If the sequence corresponding to the point is uncomputable, it has infinite
information. In contrast, for any point p in X, I({p} |ME) = 1, as we saw in section 5.
We begin to see how we introduce unnecessary complications by trying to first encode
everything by a string.

How about other, uncountable sets? Most of geometric objects are uncountable subsets
of X. We can imagine encoding lines with a pair of points and circles with a point and a
real number, etc., encoded as above. That is, we define f̃ so that a line on X going through
a pair of points is mapped to a sequence encoding two points and some flag indicating that
it is a line. This is a definition of f̃ by using characteristics, or regularity, of the subset.
However, the problem is that any interpretation of the sequence in terms of regularity must
be incorporated in the definition of f̃ . Thus, as we wish to add more patterns—lines,
circles, repeated patterns—the definition of f̃ has to become more and more elaborate;
and we would wish to somehow define f̃ computationally. However, this cannot be done
because the spirit of using Kolmogorov complexity is that any information, including any
regularities and redundancies, is conveyed through a sequence and any computation must
be done by a Turing machine, strictly on the left side of S̃ in (25).

In order to define f̃ computationally, we would have to define the notion of computation
involving G . And, of course, that is exactly what our scheme does, where the situation is
like

S
g−→ D

h−→ G (26)

A given set of maps determines the possible set D of diagrams generated by the maps.
The map h is the interpretation of diagrams into the ground representation. The difference
between the two schemes is on which side of the center the computation, or the “decom-
pression,” takes place. It occurs in U in (25) and in h in (26).

Thus, it is not easy to give a reasonable and simple definition of f̃ that makes K f̃ ,Ũ(x)
equivalent to I(x|ME). We cannot seem to define a simple encoding f̃ that reflects the
informal notion of information in the domain of subsets of Euclidean plane X. Even with
this single, relatively simple class of objects, we have these problems. Remember that
we cannot just say that there is an encoding and only talk about strings, as we pointed out
repeatedly; if we insist encoding objects into strings, we need to define a concrete encoding
for each class of objects.

The new representation provides a meta-definition for that purpose. It allows specifying
how to embed multiple computations in larger spaces in a versatile way. As shown in the
previous section, a Turing machine can be simulated by a diagram generated by {0, succ}.
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This can be isomorphically embedded in a diagram generated by ME by using p and movev

instead of 0 and succ, where p ∈ X and movev : X → X is a move by a vector v, which can
be represented by a diagram. Although a computation can be in other more direct forms,
as in the examples in 4.1, this shows that universal computation can be embedded as a part
of the representation.

Also, it allows separating the information that we wish to ignore from that which we
measure. As we have seen, this is important as some information we want to ignore is
infinite. The structure maps delineate the a priori parts of the objects whose information
are to be ignored, leaving only the information in the structure: hence the name “structural
information.”

Finally, the representation can provide a useful abstraction in designing real-world ap-
plications. In dealing with high-dimensional signal-level objects, such as sounds, images,
and sensory readings in robots, we need to model the process of finding patterns in raw
signal and grouping them together to be described at a symbol level. The information mea-
sure may be used to regularize the process of finding useful patterns in the ground level.
We can imagine implementing a system using this representation, which corresponds to
defining an encoding g of diagrams shown in (26).

Given a fixed set of structure maps, it can represent infinite sets by finite symbolic
expressions and sparse parameters. That is, after fixing the sets and maps as primitives,
diagrams can be symbolically represented just as graphs are. While the fixed sets such as
Euclidean spaces and the space of real numbers have to be implemented by some system-
dependant approximation such as floating point numbers, the structure itself is preserved
irrespective of such approximations. In the case of the line example, although points and
vectors might be translated between systems varied in, say, resolution, its structure, its
“lineness,” so to speak, would survive. In the current practice, an encoding of a line by
such sparse data would have to be written into the code; leading to the lack of generality
and flexibility.

Also, diagrams can be naturally understood as modules to construct larger and more
complex ones. The set union and intersection are the most basic ways to combine them; or
we can put the output of one diagram into the input of another. Ultimately, any computation
can be used to combine them. Our formulation provides a useful abstraction that allows us
to model such structures in a uniform way so that they can be manipulated automatically.

Conclusion
In this paper, we introduced a uniform representation of general objects. In an abstraction
of the dense representation, which includes strings, bitmaps, and other raw data, the ob-
jects are assumed to be given a priori as subsets of some sets. The proposed representation
uses a new construct called diagram to represent objects with regularity through sparse
parameters, using the maps that characterize the space in which the objects are included
as subsets. Since the representation can emulate any computation, it can exploit any com-
putable regularities in objects to compactly describe them. It is also general enough to
represent random objects as raw data, making it possible to interpolate between the dense
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and sparse representation. There is a prescribed way to connect the description to the raw
data; thus, the representation is grounded. In other words, the relationship between the pa-
rameters and the data is part of the representation so that we can give raw data and then ask
what sparser, more structured representation is possible. With the representation, we also
defined a measure of information in the objects. We proved that the measure is equivalent
to Kolmogorov complexity in the case of strings.

To answer our question in the introduction, we would say that a subset A of a set X with
structures characterized by a set M of maps is a pattern if I(A |M ) is significantly smaller
than |A| in the case A is finite and, in the case A is infinite, if I(A |M ) is finite. Even when
I(A |M ) is infinite, there can be a pattern in a statistical sense, which we leave for future
work.
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