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Abstract
In binocular stereo matching, points in left and

right images are matched according to features that
characterize each point and identify pairs of points.
When one tries to use multiple features, a difficult
problem is which feature, or combination of features,
to use. Moreover, features are difficult to cross-
normalize and so comparisons must take into account
not only their output, but also their distribution (their
output for different parameters). We present a new
approach that uses geometric constraints on the
matching surface to select optimal feature or combina-
tion of features from multiscale-edge and intensity
features. The approach requires the cyclopean coordi-
nate system to set mutually exclusive matching
choices. To obtain the matching surface, we solve a
global optimization problem on an energy functional
that models occlusions, discontinuities, and inter-
epipolar-line interactions.

1. Introduction

Binocular stereo is the process of obtaining
depth information from a pair of left and right im-
ages. The fundamental issues in stereo are: (i) how
the geometry and calibration of the stereo system are
determined, (ii) what primitives are matched between
the two images, (iii) what a priori assumptions are
made about the scene to determine the disparity, (iv)
how the disparity map is computed, and (v) how the
depth is calculated from the disparity.

Here we assume that (i) is solved, and hence the
correspondence between epipolar lines (see Figure 1)
in the two images are known. Answering question (v)
involves determining the camera parameters, trian-
gulation between the cameras, and an error analy-
sis, for which we refer the reader to Faugeras [8].

Many work focused on (iii) and (iv), including
Julesz [12]; Pollard, Mayhew, and Frisby [21]; Grim-
son [10]; Okutomi and Kanade [20]; Ayache [1].
Various algorithms, as in the cooperative stereo

(Marr and Poggio [16]), have proposed a priori as-
sumptions on the solution, including smoothness to
bind nearby pixels and uniqueness to inhibit multi-
ple matches. Occlusions and discontinuities must
also be modeled to explain the geometry of the mul-
tiple-view image formation (Belhumeur and Mumford
[2]; Geiger, Ladendorf, and Yuille [9]; Ishikawa and
Geiger [11]). Another aspect of stereo geometry is the
interdependence between epipolar lines. This topic is
often neglected because of a lack of optimal algo-
rithms. Recently, Roy and Cox [22]; followed by Ishi-
kawa and Geiger [11]; and Boykov, Veksle, and
Zabih [4] introduced network-flow algorithms that
can cope with this interdependence. We used the al-
gorithm introduced in [11] that accounts for occlu-
sions, discontinuities, and epipolar-line interactions,
in computing the optimal solution.

Our focus in this paper is (ii). In order to find
corresponding points in the two images, an algo-
rithm must have some notion of similarity, or likeli-
hood that a pair of points correspond to each other.
To estimate this likelihood, various features are
used, e.g., intensity difference, edges, junctions, and
correlation. Since none of these features is clearly
superior to others in all circumstances, using multi-
ple features is preferable to using single feature if
one knows which feature, or what combination of
features, to use when. However, features are difficult
to cross-normalize. How can we compare the output
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Figure 1. A pair of frames (eyes) and an epipolar line in the
left frame.
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from an edge matching with the one from correlation
matching? We would like not to have to cross-
normalize the output of the features, and still be
able to use multiple features.

We present a new approach that uses geometric
constraints for matching surface to select, for each
set of mutually-exclusive matching choices, optimal
feature or combination of features from multiscale-
edge and intensity features.

2. Selection Set

Throughout this paper, we assume two gray-
scale images ),(L ylI  and ),(R yrI  are given and an
epipolar line appears in the images as a horizontal
line y = c for some constant c in both images. We
suppose a local feature energy function f  is defined
in terms of ),,( yrl , and ),,( yrlf  is smaller if points

),( yl  and ),( yr  are more likely to match. Stereo
matching can be approximately seen as finding a
surface embedded in this l-r-y space M so as to
minimize the total sum of the energy under some
constraints (See Figure 2).

Suppose we have k  local feature energy func-
tions kfff ,,, 21 L . On what criterion should we
choose from these functions? Obviously, one wants
to choose the best function. However, different fea-
tures are good at different situations. For instance,
edges and other sparse features are good for cap-
turing abrupt change of depth and other salient
features, but can miss gradual depth change that
can be captured by using dense features. However,
what one cannot do is to choose functions at each
point in M, since the values of different local energy
functions are in general not comparable. In general,
the same local function must be used over the set

from which a selection is made. In other words,
across these sets of selections, different functions
can be used. Then, what is the set of selections in
the stereo matching case? We utilize monotonicity
constraint to answer this question. Monotonicity
constraint can be stated as “the order of neighboring
points from left to right does not change between
images,” or, equivalently, “l  and r  coordinate com-
ponent of the tangent vector at each point that lines
in a epipolar plane must have a non-negative ratio.”
This is not strictly true, but a reasonable approxi-
mation in many situations.

Figure 3 shows an epipolar slice of the matching
space M. The surface that represents the matching
appears as a curve here. In this figure, the
monotonicity constraint means that at each point of
the matching curve, the tangent vector of the curve
must reside in the “light cone”.

We introduce a different coordinate system,
which is sometimes called the cyclopean coordi-
nates:

Figure 2. (a) A polyhedron (shaded area) with self-occluding regions and with a discontinuity in the surface-orientation at
feature D and a depth discontinuity at feature C. (b) A diagram of left and right images (1D slice) for the image of the ramp
above. Notice that occlusions always correspond to discontinuities. Dark lines indicates where match occurs.
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Figure 3. An epipolar slice of the matching space. The
matching surface appears as a curve here. Monotonicity
constraints means that this curve cross any constant t  line
at exactly one point.
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In this coordinate system, the monotonicity con-
straint implies that the matching curve crosses each
constant- t - line at exactly one point. This means
that on each of such lines the matching problem
poses a selection of a point (match) from the points
on this line. Thus, we can choose one particular lo-
cal energy function on this line and safely choose a
different one on another line. In the following, we will
call these lines “selection lines.”

The partition of M into selection lines is minimal
in the sense that for any sub-partition the selection
of the energy function cannot be local to each parti-
tion. There are, however, other minimal partitions of
M with this local-selection property. For instance, M
can be partitioned into other “space-like” lines with l
to r tilt different from 1:1− , as far as the ratio is
negative.

3. Selection Rule

On each selection line, we are free to choose any
local energy function. Note that the information we
can easily utilize for the selection is limited. For in-
stance, we cannot use any information concerning
which matching surface is eventually selected, as
that would lead to a combinatorial explosion. Here,
we propose to employ a least “entropy” rule. It
chooses the energy function most “sure” of the
match on each selection line. After all, an energy
function that does not discriminate between one
match from another is of no use. In the other ex-
treme, if we have the ground truth, an energy func-
tion that gives the true match the value of zero and
positive infinity to other match is obviously the best.
In other words, the energy function knows for sure
which match to choose. This intuition leads us to
evaluate how “sure” each energy function is.

Let us define an “entropy” functional for a posi-
tive-valued function g  on },,1,{ 100 DDDd L+=  × }{t as:
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This functional tH  gives a degree of concentra-
tion of the function g : it is smaller when g  is more
concentrated. See Figure 4. The more peaked the
function is, the less value the functional gives. Now,
we use this functional to choose preferable local en-
ergy function on a selection line. To use this func-
tional for our purpose, where we need a dipped
function rather than a peaked one, we invert the
function and feed the result to the functional. That
is, we choose the function f  with least value of

)( max ffH t − , where maxf  is the maximum value of f
on the selection line.

( )iitit ffHf −= maxminarg

 This selection rule prefers a function that has a
distinguished dip, which means, in our situation,
one or few disparity values have an advantage over
other values. This way of selection allows avoiding
irrelevant measures locally and ensures the most
confident selection of the disparity on each selection
line.

4. Optimization

Having selected the optimal local energy func-
tion on each selection line, we now solve a global en-
ergy functional. We used the maximum-flow-based
algorithm introduced in [11]. The algorithm models
occlusions and discontinuities, and uses smooth-
ness assumption both across and along epipolar
lines. In addition, it enforces monotonicity constraint
while globally optimizing the energy functional, a
crucial feature for our purpose. It represents the
solution surface by a cut of a directed graph.

5. Experiment

We implemented the proposed algorithm using
the following features:
• Intensity. This is a simple difference between the

points, i.e.,
2

RL
2

I )},(),({),,( yrIylIyrlf −=Figure 4. Functional Ht on function g. It measures the de-
gree of concentration of the value of g.
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Figure 5. (a),(b) a sample image pair Apple, 135 ×172 pixel 8-bit gray-scale images. Results (disparity maps) are shown
using intensity square difference 2

If  (c); wavelet edge features s
Ef  with scale s = 1 (d), s = 2 (e), and s = 4 (f); multi-scale

edge Ef  (square difference of sum of wavelet coefficients for s=1,2,4) (g); and minimum-entropy selection from the five ener-
gies (h). The gray level in (i) shows which of five energy functions is used in (h) at each point. Black point represents oc-
cluded point, where no match was found, resulting in no corresponding t defined for the l-coordinate. Other gray values are in

the order of (c) to (g), i.e., darkest: intensity 
2

If , lightest: multi-scale edge Ef .
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• Wavelet edge. We used the derivative of Gaus-
sian wavelet that detects an edge in vertical di-
rection at various scale s :

,),(),(),,( RL
s

E yrIWylIWyrlf ss −=
where

=),( yxIWs

=),( yxsψ
=),( yxψ

I * ),,( yxsψ
),,( 111 ysxss −−− ψ

.)exp(2 221 xyx −−π
We refer the reader to Mallat [13] Chapter 6 for
details on multi-scale edge detection.

• Multi-scale edges consistent across the scale.
This is a measure of presence of an edge across
the scale.

.),(),(),,( RLE ∑∑ −=
s

s
s

s ylIWylIWyrlf

In Figure 5, a comparison of result by these en-
ergy functions is shown. Intensity (c) gives the poor-
est result in this example. Wavelet edges (d), (e), and
(f) for s = 1,2,4 are better, yet with black artifact on
upper right, as with the multi-scale edge (g). The re-
sult where entropy minimization rule is used with
these five functions is shown in (h). An illustration of
which energy is used where is shown in (i).

Figure 6 shows the result stereo pair Pentagon,
508 ×512 pixels 8-bit gray-scale images, three
wavelet coefficients for the left image, and the result.
To demonstrate the quality of the result, a 3D ren-
dering of the depth map is also shown.

6. Conclusion

In this paper, we have described a novel ap-
proach in stereo vision to select optimal feature lo-
cally, so that the chosen local energy function gives
the most confident selection of the disparity from
each set of mutually exclusive choices. This ap-
proach is independent of the prior model or optimi-
zation algorithm as far as the monotonicity or simi-
lar constraints are enforced.
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Figure 6. (a),(b) a sample image pair Pentagon, 508 ×512 pixels 8-bit gray-scale images. (c) The third left image is provided
for cross fusers. (d) Edge detector response for the left image with 1=s , (e) 2=s , and (f) 4=s . (g) The Disparity map
detected. Disparity ranges from − 5 to 16. (h) A 3D rendering of the result.


