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Transformation of General Binary MRF
Minimization to the First-Order Case

Hiroshi Ishikawa, Member, IEEE

Abstract—We introduce a transformation of general higher-order Markov random field with binary labels into a first-order one that
has the same minima as the original. Moreover, we formalize a framework for approximately minimizing higher-order multilabel MRF
energies that combines the new reduction with the fusion-move and QPBO algorithms. While many computer vision problems today
are formulated as energy minimization problems, they have mostly been limited to using first-order energies, which consist of unary
and pairwise clique potentials, with a few exceptions that consider triples. This is because of the lack of efficient algorithms to optimize
energies with higher-order interactions. Our algorithm challenges this restriction that limits the representational power of the models so
that higher-order energies can be used to capture the rich statistics of natural scenes. We also show that some minimization methods
can be considered special cases of the present framework, as well as comparing the new method experimentally with other such
techniques.

Index Terms—Energy minimization, pseudo-Boolean function, higher order MRFs, graph cuts.
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1 INTRODUCTION

M ANY problems in computer vision, such as segmenta-
tion, stereo, and image restoration, are formulated as

optimization problems involving inference of the maximum a
posteriori (MAP) solution of a Markov Random Field (MRF).
Such optimization schemes have become quite popular, largely
owing to the success of optimization techniques such as
graph cuts [4], [10], [17], belief propagation [6], [25], and
tree-reweighted message passing [16]. However, because of
the lack of efficient algorithms to optimize energies with
higher-order interactions, most are represented in terms of
unary and pairwise clique potentials, with a few exceptions
that consider triples [5], [17], [36]. This limitation severely
restricts the representational power of the models: The rich
statistics of natural scenes cannot be captured by such limited
potentials [25]. Higher-order cliques can model more complex
interactions and reflect the natural statistics better. There are
also other reasons, such as enforcing connectivity [35] or
histogram [32] in segmentation, for the need of optimizing
higher-order energies.

This has long been realized [13], [27], [30], but with the
recent success of the new energy optimization methods, there
is a renewed emphasis on the effort to find an efficient
way to optimize MRFs of higher order. For instance, belief
propagation variants [21], [28] have been introduced to do
inference based on higher-order clique potentials. In graph
cuts, Kolmogorov and Zabih [17] introduced a reduction that
can reduce second-order binary-label potentials into pairwise
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ones, followed by an algebraic simplification by Freedman
and Drineas [7]. Kohli et al. [15], [14] extended the class
of energies for which the optimal α-expansion and α-β -
swap moves can be computed in polynomial time. Komodakis
and Paragios [19] employed a master-slave decomposition
framework to solve a dual relaxation to the MRF problem.
Rother et al. [33] used a soft-pattern-based representation of
higher-order functions that may for some energies lead to
very compact first-order functions with a small number of
nonsubmodular terms, as well as addressing the problem of
transforming general multilabel functions into quadratic ones.

In our approach, higher-order energies are approximately
minimized by iterative “move-making,” in which higher-order
binary energies are reduced to first-order ones and minimized.

Two recent advances in graph cuts made it possible. First,
there is a generalization of the popular α-expansion algorithm
[4] called the fusion move by Lempitsky et al. [22], [23].
Second, a recent innovation allows optimization of first-order
nonsubmodular functions of binary variables. This method by
Boros, Hammer, and their coworkers [1], [3], [8] is variously
called QPBO [18] or roof-duality [31]. This has a crucial
impact on the move-making algorithms since the choice of
the move in each iteration depends on binary-label optimiza-
tion. In the context of optimizing higher-order potentials, it
means that some limitations that prevented the use of move-
making algorithms for higher-order functions can possibly be
overcome. As we mentioned, second-order potentials on binary
variables can be reduced into pairwise ones [17]. However, the
requirement that the result of reduction must be submodular
made its actual use quite rare. Thanks to the QPBO technique,
now we can think of reducing higher-order potentials into
pairwise ones, with a hope that at least part of the solution
can be found. Woodford et al. [36] used this strategy very
successfully.

So far, the second-order case has remained the only case
that could be solved using this group of techniques because
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the reduction we mention above is only applicable in that case.
To be sure, a totally different reduction technique that can
reduce binary energies of any order has been known for a long
time [29]; however, to our knowledge it has never been used
successfully in practice for orders higher than two. This seems
to be because, even though it can reduce any function into a
pairwise clique potential, the result is always nonsubmodular
and hard to optimize in practice. We discuss it in Sections 3.2
and 3.3, as well as experimentally investigating it in Section
8.3.4.

In this paper, we introduce a new reduction technique
along the lines of the Kolmogorov-Zabih reduction that can
reduce any higher-order minimization problem of Markov
random fields with binary labels into an equivalent first-order
problem. Then, we combine it with fusion move and QPBO
to approximately minimize higher-order multilabel energies.
It also turns out that some of the known higher-order energy
minimization techniques can be considered special cases of the
new framework. We demonstrate its effectiveness by testing it
on a third-order potential, an image restoration problem that
has been used to test two BP algorithms [21], [28] capable of
optimizing higher-order energies.

Part of this paper previously appeared as [11]. This extended
version contains a new generalization of the reduction, discus-
sions on the polynomial-time minimizability of the reduced
energy and necessary number of auxiliary variables, and an
investigation of relations between the new algorithm and other
known methods.

Organization of the Paper. In the next section, we provide
the notation and definition for higher-order energy mini-
mization. In Section 3, we briefly describe the two known
reductions of higher-order binary MRFs into first-order ones
and discuss their limitations. In Section 4, we introduce the
new reduction in its simplest form. In Section 5, we generalize
the new reduction and discuss its various aspects. In Section 6,
we describe the higher-order fusion-move algorithm using the
new reduction. In Section 7, we investigate the relations of
the new method with other known methods. In Section 8,
we report the results of our experiments. We conclude in
Section 9.

2 PRELIMINARIES

In this section, we provide some notations and definitions
pertinent to the areas of Markov random fields and higher-
order energy minimization.

2.1 Markov Random Fields and Energy Minimization
Problem
We denote the set {0,1} of binary labels by B and the set
of real numbers by R. The energy minimization problem
considered here is as follows:

Let V be a set of pixels1 and L a set of labels, both finite sets.
Also, let C be a set of subsets of V . We call an element of C a

1. Sometimes also called sites, they need not necessarily represent actual
pixels, though they often do; consider it as just a name for the elements of a
finite set.

clique. The cliques define a form of generalized neighborhood
structure. In the case where all cliques consist of one or two
pixels, it can be thought of as an undirected graph, where the
set of cliques is divided into the set of all singleton subsets
and that of pairs, i.e., edges. In the general case, the pair (V,C)
can be thought of as a hypergraph.

Let us denote by LV the set of labelings X : V → L, i.e.,
assignments of a label Xv ∈ L to each pixel v∈V . In particular,
the set of binary labelings is denoted by BV .

The energy E(X) is a real-valued function defined on this
set:

E : LV → R.

A crucial assumption is that E(X) is decomposable into a
sum

E(X) =
∑
C∈C

fC(XC), (1)

Here, for a clique C ∈ C, fC(XC) is a function that depends
only on labels XC assigned by X to the pixels in C. We denote
the set of labelings on the clique C by LC; thus XC ∈ LC and
fC : LC → R.

Supposing a random variable that takes values in L at each
pixel, the labeling X can be thought of as the system of random
variables. Such a system, along with the energy, is called a
Markov random field (MRF).

The order of an MRF and its energy is defined to be the
number of pixels in the largest clique minus one. Thus, an
MRF of first order is of the form

E(X) =
∑
{v}∈C

f{v}(X{v})+
∑

{u,v}∈C

f{u,v}(X{u,v}),

which is usually written as

E(X) =
∑
v∈V

fv(Xv)+
∑

(u,v)∈E

fuv(Xu,Xv). (2)

Similarly, a second-order MRF can have cliques containing
three pixels and an energy of the form

E(X)=
∑
{v}∈C

f{v}(X{v})+
∑

{u,v}∈C

f{u,v}(X{u,v})+
∑

{u,v,w}∈C

f{u,v,w}(X{u,v,w}).

If we have a labeling X ∈ LV , we denote its restriction to a
subset U ⊂V by X |U :

X |U ∈ LU , (X |U )v = Xv,v ∈U. (3)

2.2 Conditional Random Field
An undirected graphical stochastic model that contains both
the hidden and the observed variables is sometimes called
a conditional random field (CRF) [20]. When the observed
variables are fixed, the rest of the model on the hidden
variables is an MRF. The notion recently emerged from the
area of machine learning, where the observed data is often not
fixed, and is instead used to learn the model itself.

In the vision literature, the term CRF is increasingly used
where the term MRF would have been used before, even where
such notions as learning are not used. Traditionally, MRFs
used in the area tend to have the form where observed data
are associated with individual pixels, and the dependence of
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the variable at a pixel on the observation only comes from the
data associated with that pixel. Perhaps because of this, the
term CRF is sometimes used to mean that a variable depends
on the observed data associated with more than one pixel,
even if the problem fixes the data at the beginning, making it
effectively an MRF problem.

In the context of energy minimization, the two terms MRF
and CRF are used almost interchangeably since, at that level
where the optimization problem is already well-separated
from the context of stochastic modeling, there is no useful
difference. One caveat, though, is that it can be confusing
when the order of the random field is discussed. The order of
an MRF has long been defined as the number of the pixels in
the maximum clique in the energy minus one whereas, in the
case of the CRF, it is the same as the size of the maximum
clique. Thus, a CRF of order k is an MRF of order k−1, when
the observed variables are fixed.

2.3 Pseudo-Boolean Functions
An MRF energy that has labels in B is a function of
binary variables: f : Bn → R, where n is the number of
pixels/variables. Such functions are called pseudo-Boolean
functions (PBFs).

Any PBF can be uniquely represented as a polynomial of
the form

f (x1, . . . ,xn) =
∑
S⊂V

cS
∏
i∈S

xi,

where V = {1, . . . ,n} and cS ∈ R. We refer the readers to [2],
[9] for proof.

Combined with the definition of the order, this implies that
any binary-labeled MRF of order d−1 can be represented as a
polynomial of degree d. Thus, the problem of reducing higher-
order binary-labeled MRFs to first order is equivalent to that of
reducing general pseudo-Boolean functions to quadratic ones.

2.4 Minimization of PBFs
A first-order binary energy (2) is said to be submodular if

fuv(0,0)+ fuv(1,1) ≤ fuv(0,1)+ fuv(1,0)

holds for every pairwise potential fuv for (u,v)∈E. First-order
binary energies that are submodular can be minimized exactly
by an s-t-mincut algorithm [17]. The following well-known
proposition gives a convenient criterion for submodularity
when the energy is given as a quadratic polynomial in binary
variables:

Proposition 1. A quadratic pseudo-Boolean function

E(x1, . . . ,xn) =
∑
i, j

ai jxix j +
∑

i

aixi +a

is submodular if and only if ai j ≤ 0 for all i, j.

Proof: The proposition follows directly from Proposition
3.5 in Nemhauser et al. [26].

In this paper, we rely on the QPBO algorithm to minimize
binary-labeled energies. The algorithm returns a partial solu-
tion assigning either 0 or 1 to some of the pixels, leaving

the rest unlabeled. Thus, if we run QPBO on a binary energy
E(x) defined on BV , we obtain a partial labeling z∈BV ′

, where
V ′ ⊂V . The algorithm guarantees that the partial labeling is a
part of a globally optimal one. That is, there exists a labeling
y′ ∈BV that attains the global minimum and such that y′|V ′ = z.
If the energy is submodular, QPBO labels all pixels, finding a
global minimum.

Crucially for our purpose, QPBO has an “autarky” property
[2], [3], [18]: If we take any labeling and “overwrite” it with a
partial labeling obtained by QPBO, the energy for the resulting
labeling is not higher than that for the original labeling. Let
y ∈BV be an arbitrary binary labeling and z ∈BV ′

the result of
running QPBO on an energy E(x), with V ′ ⊂V . Let us denote
by y▹ z ∈ BV the labeling obtained by overwriting y by z:

(y▹ z)v =

{
zv, if v ∈V ′

yv, otherwise.
(4)

Then, the autarky property means E(y▹ z) ≤ E(y).

3 KNOWN REDUCTIONS

There are a couple of known methods to reduce a higher-
order function of binary variables to first-order one so that
the minima of the reduced function can be translated easily
to those for the original function. Here, we outline the two
known reduction methods and then discuss their limitations.

3.1 Reduction by Minimum Selection
Kolmogorov and Zabih [17] first proposed this reduction in
the context of graph-cut optimization. Later, Freedman and
Drineas [7] recast it into an algebraic formula.

Consider a cubic pseudo-Boolean function of x,y,z ∈ B

f (x,y,z) = axyz.

The reduction is based on the following identity:

xyz = max
w∈B

w(x+ y+ z−2). (5)

Let a < 0 be a real number. Then

axyz = min
w∈B

aw(x+ y+ z−2).

Thus, whenever axyz appears in a minimization problem with
a < 0, it can be replaced by aw(x+ y+ z−2).

If a > 0, we flip the variables (i.e., replace x by 1−x, y by
1− y, and z by 1− z) of (5) and consider

(1− x)(1− y)(1− z) = max
w∈B

w(1− x+1− y+1− z−2).

This is simplified to

xyz = min
w∈B

w(x+y+z−1)+(xy+yz+zx)−(x+y+z)+1. (6)

Therefore, if axyz appears in a minimization problem with
a > 0, it can be replaced by

a{w(x+ y+ z−1)+(xy+ yz+ zx)− (x+ y+ z)+1}.

Thus, in either case, the cubic term can be replaced by
quadratic terms. As we mentioned in Section 2.3, any binary
MRF of second order can be written as a cubic polynomial.
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Then, each cubic monomial in the polynomial can be con-
verted to a quadratic polynomial using one of the formulas
above, making the whole energy quadratic.

This reduction only works with cubic terms. For quartic
term axyzt, the same trick works if a < 0:

xyzt = max
w∈B

w(x+ y+ z+ t −3),

axyzt = min
w∈B

aw(x+ y+ z+ t −3).

However, if a > 0,

(1− x)(1− y)(1− z)(1− t) = max
w∈B

w(−x− y− z− t +1)

becomes

xyzt = max
w∈B

w(−x− y− z− t +1)+(xyz+ xyt + xzt + yzt)

− (xy+ yz+ zx+ xt + yt + zt)+(x+ y+ z+ t)−1.

Unlike the cubic case, the maximization problem is not turned
into a minimization. Similarly, this does not work with any
term of even degree. This poses a severe restriction for which
function this reduction can be used in the case of degrees
higher than three.

In this paper, we remove this limitation in two ways. First,
we introduce in Section 4 a new transformation that can be
used for higher-degree terms with positive coefficients. In the
quartic case, it gives:

xyzt = min
w∈B

w(−2(x+y+z+t)+3)+xy+yz+zx+tx+ty+tz,

which expresses the quartic term as a minimum of a quadratic
expression, making it suitable for reduction of terms with
positive coefficients.

Also, we introduce in Section 5 a generalization of both the
minimum selection and the new transformation that gives even
more different ways of converting higher-order energies into
first-order ones. This is accomplished by flipping some of the
variables before and after transforming the higher-order term
to a minimum or maximum. For instance, another reduction
for the quartic term can be obtained using the technique: if
we define x̄ = 1− x, we have xyzt = (1− x̄)yzt = yzt − x̄yzt.
The right-hand side consists of a cubic term and a quartic
term with a negative coefficient, which can be reduced using
the minimum-selection technique (see equation (19) in Section
5.4.) This generalization gives rise to an exponential number
(in terms of occurrences of variables in the function) of
possible reductions such that choosing which reduction to
use is a whole new nontrivial problem. Although we cannot
address the new problem thoroughly in this paper, we discuss
some aspects of it in Section 5 and compare some specific
reductions experimentally in Section 8.

3.2 Reduction by Substitution
However, it has long since been known that the optimization
of pseudo-Boolean function of any degree can always be re-
duced to an equivalent problem for quadratic pseudo-Boolean
function. The method was proposed by Rosenberg [29] and
has since been recalled by Boros and Hammer [2].

In this reduction, the product xy of two variables x,y in the
function is replaced by a new variable z, which is forced to
have the same value as xy at any minimum of the function
by adding penalty terms that would have a very large value if
they do not have the same value.

More concretely, assume that x,y,z ∈ B and define

D(x,y,z) = xy−2xz−2yz+3z. (7)

Then, it is easy to check, by trying all eight possibilities, that
D(x,y,z) = 0 if xy = z and D(x,y,z) > 0 if xy ̸= z. Consider an
example pseudo-Boolean function

f (x,y,w) = xyw+ xy+ y.

The reduction replaces xy by z and add MD(x,y,z):

f̃ (x,y,w,z) = zw+ z+ y+MD(x,y,z), (8)

which has one more variable and is of one less degree than the
original function f . Here, M is chosen to be a large positive
number so that, whenever xy ̸= z and thus D(x,y,z) > 0, it is
impossible for f̃ to take the minimum.

By repeating the above reduction, any higher-order func-
tion can be reduced to a quadratic function with additional
variables; for any minimum-energy value assignment for the
new function, the same assignment of values to the original
variables gives the minimum energy to the original function.

3.3 The Problem with Reduction by Substitution

Reduction by substitution has not been used very often in
practice because, we suspect, it is difficult to make it work in
practice.

Note that, according to (7),

MD(x,y,z) = Mxy−2Mxz−2Myz+3Mz

in (8). The first term, Mxy, is a quadratic term with a very
large positive coefficient, which in all cases makes the result
of the reduction nonsubmodular, according to Proposition 1.
Though in using QPBO submodularity is not the only factor
(see Section 5.2), it seems that such an energy cannot be
minimized very well even with QPBO: in our experiments
(Section 8.3) with this reduction, most variables were not
assigned labels, leaving the move-making algorithm almost
completely stalled.

4 THE NEW REDUCTION

In this section, we introduce a new reduction of higher-order
PBFs into quadratic ones. It is an extension of the reduction
by minimum selection that we described in Section 3.1.

4.1 Quartic Case

Let us look at the quartic case. We would like to generalize (5)
and (6) to higher degrees. Upon examination of these formulas,
one notices that they are symmetric in the three variables x,y,
and z. This suggests that any quadratic polynomial reduced
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from xyzt should also be symmetric in the four variables.2

That is, if a generalized formula exists, it should look like

xyzt =min
w

w(linear symmetric polynomial)

+(quadratic symmetric polynomial).

It is known that any symmetric polynomial can be written as
a polynomial expression in the elementary symmetric polyno-
mials. There is one elementary symmetric polynomial of each
degree; the ones we need are:

s1 = x+ y+ z+ t,

s2 = xy+ yz+ zx+ tx+ ty+ tz.

Also, when the variables only take values in B, the square
of a variable is the same as itself. Thus, we have s1

2 = s1 +
2s2, implying that any quadratic symmetric polynomial can
be written as a linear combination of s1,s2, and 1. Thus, the
formula should be of the form:

xyzt = min
w∈B

w(as1 +b)+ cs2 +ds1 + e.

An exhaustive search for integers a,b,c,d, and e that makes
the right-hand side positive only when x = y = z = t = 1 and
0 otherwise yields:

xyzt = min
w∈B

w(−2s1 +3)+ s2.

A similar search fails in finding a quintic formula, but increas-
ing the number of auxiliary variables, we obtain:

xyztu = min
(v,w)∈B2

{v(−2r1 +3)+w(−r1 +3)}+ r2,

where r1 and r2 are the first and second-degree elementary
symmetric polynomials in x,y,z, t, and u. In the same way,
similar formulas for degrees six and seven can be found, from
which the general formula can be conjectured.

4.2 General Case
Now, we introduce similar reductions for general degree.
Consider a monomial ax1 · · ·xd of degree d. We define the
elementary symmetric polynomials in these variables as:

S1 =
d∑

i=1

xi, S2 =
d−1∑
i=1

d∑
j=i+1

xix j =
S1(S1 −1)

2
.

Case: a < 0. It is simple if a < 0:

ax1 · · ·xd = min
w∈B

aw{S1 − (d −1)} , (9)

as given by Freedman and Drineas [7].

Case: a > 0. This case is our contribution:

ax1 · · ·xd = a min
w1,...,wnd ∈B

nd∑
i=1

wi
(
ci,d(−S1 +2i)−1

)
+aS2,

(10)
which follows from the following theorem:

2. Actually, the symmetry as a polynomial is not necessary. It has to be
symmetric only on B4. See equation (19) in Section 5.4.

Theorem 1. For x1, . . . ,xd in B,

x1 · · ·xd = min
w1,...,wnd ∈B

nd∑
i=1

wi
(
ci,d(−S1 +2i)−1

)
+S2, (11)

where

nd =
⌊

d −1
2

⌋
, ci,d =

{
1, if d is odd and i = nd ,

2, otherwise.

Proof: Let us suppose that k of the d variables x1, . . . ,xd
are 1 and the rest are 0. Then, it follows

S1 = k, S2 =
k(k−1)

2
.

Let us also define

l =
⌊

k
2

⌋
, md =

⌊
d −2

2

⌋
, N = min(l,md),

A = min
w1,...,wnd ∈B

md∑
i=1

wi(−2S1 +4i−1)+S2.

Since the variables wi can take values independently,

A =
md∑
i=1

min(0,−2k +4i−1)+
k(k−1)

2

If k is even (k = 2l), we have

−2k +4i−1 < 0 ⇐⇒ 4i < 4l +1 ⇐⇒ i ≤ l,

and if k is odd (k = 2l +1)

−2k +4i−1 < 0 ⇐⇒ 4i < 4l +3 ⇐⇒ i ≤ l.

Thus,

A =
N∑

i=1

(−2k+4i−1)+
k(k−1)

2
= 2N2−N(2k−1)+

k(k−1)
2

.

(12)
We note that A = 0 if k ≤ d − 2. This can be seen by

checking the cases k = 2l and k = 2l + 1 in (12), noting that
l ≤ md and thus N = l.

Now, consider the even-degree case of (11). Since, in that
case, nd = md and ci,d = 2, the right-hand side equals A. Thus,
both sides are 0 if k ≤ d −2.

If k = d −1, A = 0 similarly follows from N = l = md .
If k = d, then md = l −1. Thus, substituting N = l −1 and

k = 2l in (12), we have

A = 2(l −1)2 − (l −1)(4l −1)+ l(2l −1) = 1,

which completes the proof in the even-degree case.
When d is odd, we have md = nd − 1 and the right-hand

side of (11) is

A+min(0,−S1 +2nd −1).

Since d = 2nd +1,

−S1 +2nd −1 ≥ 0 ⇐⇒ k ≤ d −2.

If k ≤ d −2, then A = 0 and −S1 +2nd −1 ≥ 0; thus, both
sides of (11) are 0.
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If k = d −1, then

−S1 +2nd −1 = −k + k−1 = −1.

Also, since md = l − 1, using N = l − 1, k = 2l in (12), it
follows that

A = 2(l −1)2 − (l −1)(4l −1)+ l(2l −1) = 1,

showing that the both sides of (11) are 0.
Finally, if k = d, we have

−S1 +2nd −1 = −k + k−1−1 = −2,

and from N = md = l −1,k = 2l +1, and (12),

A = 2(l −1)2 − (l −1)(4l +1)+ l(2l +1) = 3,

which shows that both sides of (11) are 1.
Note that the cubic case of (11) is different from (6) and

simpler.
As we mentioned above, any pseudo-Boolean function can

be written uniquely as a polynomial in binary variables. Since
each monomial in the polynomial can be reduced to a quadratic
polynomial using (9) or (10), depending on the sign of the
coefficient and the degree of the monomial, the whole function
can be reduced to a quadratic polynomial that is equivalent to
the original function in the sense that, if any assignment of
values to the variables in the reduced polynomial achieves its
minimum, the assignment restricted to the original variables
achieves a minimum of the original function. Note that the
reduction is valid whether the function is submodular or not.

5 GENERALIZATION AND RAMIFICATION

In this section, we introduce the “γ-flipped” version of the
transformation given in the previous section. By γ-flipping, we
obtain many different reductions. So many, in fact, that any
serious comparison of different reductions, experimentally or
theoretically, will have to be left for future work. Comparing
a few different reductions would not offer much information,
as it would be akin to comparing the energy of a few labelings
in an MRF. Rather, we will need some algorithm or at least
a heuristic to guide the selection of which reduction to use.
Nevertheless, we discuss some aspects of the transformation
in this section, as well as testing the most obvious variants
experimentally in Sections 8.3.3 and 8.3.5.

For b ∈ B, let us denote the negation of b, or 1−b, by b̄.
When we allow the negations, the same PBF can be written
in many different ways:

xyzt = (1− x̄)yzt = yzt − x̄yzt

= yzt − x̄zt + x̄ȳzt = zt − ȳzt − x̄zt + x̄ȳzt.

Let us call this manipulation flipping. By flipping some of the
variables before reducing to quadratic and then flipping them
back after, we obtain many more reduction formulas.

An important caveat is that when the energy is minimized,
variables x and x̄ are not independent. Before using any
algorithm, such as QPBO, that assumes independence of all
variables, we need to make sure that only one of x or x̄ appears
in the energy for each variable x.

5.1 γ-Flipping Variables and Formulas
The monomial ax1 · · ·xd that we gave the reduction formulas
(9) and (10) is a function that has a nonzero value only
when all the variables are 1. We generalize this to arbitrary
combinations of 0s and 1s.

For an arbitrary binary vector γ = (γ1, . . . ,γd) ∈ Bd , let us
define

I0
γ = {i |γi = 0}, I1

γ = {i |γi = 1}. (13)

Let x(γ) = (x(γ)
1 , . . . ,x(γ)

d ) be a vector of variables defined from
γ and another vector x = (x1, . . . ,xd) of variables by

x(γ)
i = γixi + γ̄ix̄i =

{
xi, if γi = 1,

x̄i, if γi = 0.

We call x(γ) the γ-flipped version of the variable vector x.
Then, the monomial ax(γ)

1 · · ·x(γ)
d has a nonzero value a if and

only if x = γ:

ax(γ)
1 · · ·x(γ)

d =

{
a if x = γ,

0 otherwise.
(14)

Let us define the γ-flipped elementary symmetric polyno-
mials of degree one and two:

S(γ)
1 =

d∑
i=1

x(γ)
i =

∑
i∈I1

γ

xi +
∑
i∈I0

γ

(1− xi) = −
d∑

i=1

(−1)γi xi +
∣∣I0

γ
∣∣ ,

S(γ)
2 =

d−1∑
i=1

d∑
j=i+1

x(γ)
i x(γ)

j =
S(γ)

1 (S(γ)
1 −1)
2

.

Then the generalized reduction can be stated as follows:

Theorem 2. For x1, . . . ,xd in B, if a < 0,

ax(γ)
1 · · ·x(γ)

d = min
w∈B

aw
{

S(γ)
1 − (d −1)

}
= min

w∈B
aw

{
−

d∑
i=1

(−1)γi xi −
∣∣I1

γ
∣∣+1

}
, (15)

and if a > 0

ax(γ)
1 · · ·x(γ)

d = a min
w1,...,wnd ∈B

nd∑
i=1

wi

(
ci,d(−S(γ)

1 +2i)−1
)

+aS(γ)
2 .

(16)

Proof: It directly follows from (9) or (10), depending on
the sign of a.

5.2 Polynomial-time Minimizability of the Reduced
Function
Looking at the generalized reduction (15) and (16) in view
of Proposition 1, we must conclude that there seems to be no
obvious and general characterization for submodularity of the
resulting quadratic polynomial.

In general, the right-hand side of (15) and (16) is not sub-
modular. However, submodularity is not a necessary condition
for the function to be globally minimizable in polynomial time.
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For instance, flipping variables can make a nonsubmodular
function into a submodular one.

The problem occurs when there is frustration, i.e., when it
is not possible to consistently flip or not flip each variable
so that coefficients of all quadratic terms are negative. For
instance, we can make the coefficients of any two of the three
quadratic terms negative in

xy+ yz+ zx = y− x̄y+ yz+ z− zx̄

= x− xȳ+ z− ȳz+ zx

= xy+ y− yz̄+ x− z̄x,

but not all three. If we only look at the term xy, we can
make it submodular in terms of variables x̄,y. But if there
are other occurrences of x in the energy as a whole, that may
make other terms nonsubmodular, as happens in the above
example. If the form of the clique potentials is such that there
is a way of flipping variables so that all quadratic monomials
become submodular, the energy would be globally minimiz-
able in polynomial time using graph cuts, which happens in
minimizing Pn Potts model with α-β -swap (Section 7.2.1.)

Guaranteed Cases. There are special forms of potentials
for which we can guarantee that the reduced polynomial is
minimizable in polynomial time using graph cuts.

The first case is when the term is of the form ax1 · · ·xd with
a negative coefficients a, i.e., when γ = (1, . . . ,1) in (15). This
function takes the value a when all of x1, . . . ,xd are 1, and 0
otherwise. By the reduction, we have

ax1 · · ·xd = min
w∈B

aw{S1 − (d −1)} ,

in which all of the quadratic monomials in awS1 have negative
coefficients, making it submodular according to Proposition 1.

Another case is the opposite, i.e., when the term is of the
form ax̄1 · · · x̄d with a negative coefficient a, i.e., when γ =
(0, . . . ,0) in (15). By the reduction, we have

ax̄1 · · · x̄d = min
w∈B

aw{−S1 +1} ,

in which all of the quadratic monomials in −awS1 have
positive coefficients. This makes the potential supermodular.
However, we can flip the auxiliary variable w so that the
quadratic monomials in

−awS1 = min
w̄∈B

(−a(1− w̄)S1)

have negative coefficients. This can be done without influenc-
ing other parts of the energy since w appears nowhere else. If
we use the QPBO algorithm, this is automatically taken care
of and no explicit flipping is necessary.

These two cases are hidden in the minimization of Pn Potts
model with α-expansion (Section 7.2.2).

5.3 γ-Flipped Representation of PBFs
Let f : Bd →R be a pseudo-Boolean function. Then, from (14)
it follows that

f (x) =
∑
γ∈Bd

f (γ)x(γ)
1 · · ·x(γ)

d .

Moreover, for any λ ∈ R,

f (x) = λ +
∑
γ∈Bd

( f (γ)−λ )x(γ)
1 · · ·x(γ)

d . (17)

In particular, by taking

λ = min
γ∈Bd

f (γ),

we can make all of the coefficients in the sum (17) nonnega-
tive. This is an example of the posiform representation of the
PBF (See [2]).

Similarly, by taking

λ = max
γ∈Bd

f (γ), (18)

we can make all of the coefficients in (17) nonpositive. Thus,
any PBF can be transformed to a quadratic PBF using only
(15), by making all nonzero coefficients negative first. This is
essentially what is done in the binary reduction by Rother et
al. [33]. See Section 7.1 for more discussion.

5.4 The Number of Necessary Auxiliary Variables
In our reduction, the number of additional variables per clique
in the worst case is exponential in terms of the degree. This
is because there are not only the highest-degree terms but
also lower-degree terms, each of which needs its own new
variables.

The exponential growth in the number of monomials in the
general case is in a sense unavoidable. Any PBF of d variables
can be represented as a polynomial of degree d, which has 2d

coefficients. For almost all such functions, all coefficients are
nonzero. Since the reduction needs at least one variable for
each monomial with three or higher degree, the number of
extra variables must also increase exponentially as the order
of the energy increases.

As mentioned above, we can make one coefficient in the
sum (17) zero and all other coefficients nonpositive by setting
λ by (18). Since the transformation (15) in the negative case
requires only one new variable for converting each term, a
minimization problem of any function of d binary variables
can be translated into the quadratic case by adding at most
2d −1 auxiliary variables.

On the other hand, if we expand the function as a poly-
nomial as in the previous section, there are at most

(d
i

)
nonzero monomials of degree i. In the worst case, where each
monomial has a positive coefficient, the number of auxiliary
variables needed for using the transformation (10) is

Nall+(d) =
d∑

i=3

(
d
i

)⌊
i−1

2

⌋
= 2d−2(d −3)+1,

which is less than 2d − 1 when d ≤ 6. If the coefficients are
all negative, the number is:

Nall−(d) =
d∑

i=3

(
d
i

)
= 2d −1− d(d +1)

2
,

which is the best case. In the average case, where one half
of the coefficients are negative and the other half positive, we
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are better off in this respect using the polynomial expansion
when d ≤ 7 (Table 1).

Note that in a clique potential, which generally would
consist of one or more monomials, each monomial can have a
different mix of variables xi and their negations x̄i. Thus, for
instance, the monomial xyzt can be flipped and reduced:

min
x,y,z,t∈B

xyzt = min
x,y,z,t∈B

{−x̄yzt − ȳzt + zt}

= min
x,y,z,t,u,w∈B

{−u(x̄+ y+ z+ t −3)−w(ȳ+ z+ t −2)+ zt}

= min
x,y,z,t,u,w∈B

{−u(−x+ y+ z+ t −2)−w(−y+ z+ t −1)+ zt} .

(19)

Although this particular example increases the number of
extra variables compared to simply using (10), in general
the combination of variables and their negations to minimize
the number of auxiliary variables in the whole energy would
depend on that particular energy.

Since there is an exponential number—not just in terms
of the degree, but in terms of the number of occurrences of
the variables in the whole energy—of possible combinations,
finding the combination with the minimum number of neces-
sary auxiliary variables seems a nontrivial problem. It may be
an interesting direction for future research, especially if we
allow an error tolerance for the energy value to deviate from
the given exact value in favor of less auxiliary variables.

6 HIGHER-ORDER GRAPH CUTS
Turning our attention to higher-order MRFs with more than
two labels, in this section we formalize a framework for
approximately minimizing higher-order multilabel MRFs that
combines the new reduction with the fusion-move and QPBO
algorithms.

6.1 Graph Cuts and Move-Making Algorithms
Currently, one of the most popular optimization techniques
in vision is α-expansion [4]. Here, we explain it and other
algorithms to which the framework is directly related.

6.1.1 α-Expansion and α-β -Swap
The α-expansion and α-β -swap algorithms keep a current
labeling and iteratively make a move, i.e., a change of labeling.
In one iteration, the algorithms change the current labeling
so that the energy becomes smaller or, at least, stays the
same. Such algorithms in general are called the move-making
algorithms.

In the α-expansion algorithm, a label α ∈ L is chosen at
each iteration. The move is decided by either keeping the
original label or replacing it with α at each pixel. Thus,
the “area” labeled α can only expand; hence the name α-
expansion.

The choice of whether changing the label or not at each
pixel defines a binary labeling. The labeling after the move
from X ∈ LV according to a binary labeling y ∈ BV is defined
by:

(Xy,α)v =

{
Xv, if yv = 0,

α , if yv = 1,

so that yv = 0 means that Xv stays the same and yv = 1 that
Xv is changed to α .

An energy E(y) for the binary labeling y is defined by
E(y) = E(Xy,α) as the multilabel energy after the move corre-
sponding to binary labeling. By minimizing this binary energy,
the move that reduces the energy most is chosen. When the
binary problem is submodular, it can be solved globally by an
s-t mincut algorithm. By visiting all labels α in some order
and repeating it, E(X) is approximately minimized.

In the case of α-β -swap, allowed moves are defined as those
that, at each pixel, keep the current label or swap the two fixed
labels α and β .

This was all done assuming that the energy E(X) is a first-
order MRF. The algorithm has a guarantee on how close it
can approach the global minima in that case. Kohli et al.
[15] investigated the case when E(X) is of higher order, and
characterized the class of higher-order energies for which the
globally optimal α-expansion and α-β -swap moves can be
computed in polynomial time.

6.1.2 Fusion Moves
The fusion move [22], [23] is a simple generalization of α-
expansion: in each iteration, define the binary problem as the
pixelwise choice between two arbitrary labelings, instead of
between the current label and the fixed label α . Especially
important to us is the variation where we maintain a current
labeling X ∈ LV as in α-expansion and iteratively merge it
with a “proposal” labeling P ∈ LV by arbitrarily choosing one
of the two labelings to take the label from at each pixel.
For instance, in the α-expansion algorithm, the proposal is
a constant labeling that assigns the label α ∈ L to all pixels.
Here, P can be any labeling.

It seems so simple and elegant that one may wonder why
the move-making algorithm was not formulated this way from
the beginning. The answer is simple: it is because fusion
moves are nonsubmodular in general, whereas in the case of
α-expansion and α-β -swap moves, the submodularity can be
guaranteed by some simple criteria. It is only because of the
emergence of the QPBO/roof-duality optimization that we can
now consider the general fusion move.

6.1.3 Combining Fusion Moves and QPBO
The development of fusion moves and QPBO has an important
implication in the optimization of higher-order energies. As
we mentioned, the reduction in Section 3.1 has been known
for some time. However, for the result of the reduction to be
minimized with the popular techniques such as graph cuts, it
must be submodular. This requirement has kept its actual use
quite rare. In combination with the QPBO algorithm, higher-
order potentials may be approximately minimized by move-
making algorithms. The derived binary energy, which would
be of the same order, can be reduced into pairwise one and
then at least a part of the solution may be found by QPBO,
improving the current labeling iteratively. This is done by
changing the labels only at the nodes that were labeled by
QPBO, which was proposed by Rother et al. [31].

The combination, which we might call the higher-order
graph cuts, was first introduced by Woodford et al. [36],
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TABLE 1
Number of necessary auxiliary variables.

Degree d 3 4 5 6 7 8 9
Polynomial expansion (worst case) Nall+(d) 1 5 17 49 129 321 769
Polynomial expansion (average)

�
Nall+(d)+Nall−(d)

�
/2 1 5 16.5 45.5 114 270 617.5

All negative coefficients 2d −1 7 15 31 63 127 255 511

where they showed that second-order smoothness priors can
be used for stereo reconstruction by introducing an interesting
framework. It integrates existing stereo algorithms, which may
sometimes be rather ad hoc, and combines their results in
a principled way. In the framework, an energy is defined to
represent the global trade-off of various factors. The energy
is minimized using the fusion-move algorithm, in which
the various existing algorithms are utilized to generate the
proposals. In particular, this allows powerful segmentation-
based techniques to be combined with the global optimization
methods.

6.2 Higher-Order Graph Cuts
Here, we introduce a general framework for approximate
minimization of multilabel MRFs of general order, made
possible by our transformation of general binary MRFs into
first-order ones.

The algorithm maintains the current labeling X . In each
iteration, the algorithm fuses X and a proposed labeling P∈ LV

by minimizing a binary energy. How P is prepared is problem-
specific, as is how X is initialized at the beginning of the
algorithm.

The result of the merge according to a binary labeling y ∈
BV is defined by

(
Xy,P)

v =

{
Xv, if yv = 0,

Pv, if yv = 1.

The binary energy to be minimized in each iteration is then

E(y) = E
(
Xy,P) .

For the energy E(X) of the form (1), the polynomial
expression of E(y) is

E(y) =
∑
C∈C

EC(yC) =
∑
C∈C

∑
γ∈BC

fC
(

X γ,P
C

)
θ γ

C (yC), (20)

where X γ,P
C ∈ LC is the labeling X γ ,P on the clique C and

θ γ
C (yC) is a polynomial of degree |C| defined by

θ γ
C (yC) =

∏
v∈C

y(γ)
v ,

which, similarly to (14), is 1 if yC = γ and 0 otherwise.
The polynomial E(y) is then reduced into a quadratic

polynomial using the technique described in the previous
sections. Let Ẽ(ỹ) denote the resulting quadratic polynomial in
terms of the labeling ỹ∈BW , where W ⊃V . We use the QPBO
algorithm to minimize Ẽ(ỹ) and obtain a labeling z ∈ BW ′

on
a subset W ′ of W . Remember our notation for the restriction

of labelings (3) and overwriting labelings (4) in Section 2. We
have:

Proposition 2. Let y0 ∈ BV be the labeling that assigns 0 to
all v ∈V and yz = y0 ▹ z|V∩W ′ . Then,

E(yz) ≤ E(y0).

Proof: Let us define

Y0 = {ỹ ∈ BW | ỹ|V = y0}, ỹmin
0 = argmin

ỹ∈Y0
Ẽ(ỹ),

Yz = {ỹ ∈ BW | ỹ|V = yz}, ỹmin
z = argmin

ỹ∈Yz
Ẽ(ỹ).

Then, by the property of the reduction, we have E(y0) =
Ẽ(ỹmin

0 ) and E(yz) = Ẽ(ỹmin
z ). Also, if we define z̃ = ỹmin

0 ▹ z,
we have Ẽ(z̃) ≤ Ẽ(ỹmin

0 ) by the autarky property. Since z̃ ∈Yz,
we also have Ẽ(ỹmin

z ) ≤ Ẽ(z̃). Thus, E(yz) = Ẽ(ỹmin
z ) ≤ Ẽ(z̃) ≤

Ẽ(ỹmin
0 ) = E(y0).

It follows that

E
(
Xyz,P

)
= E(yz) ≤ E(y0) = E(X).

Therefore, we update X to Xyz,P and (often) decrease the
energy. We iterate the process until some convergence criterion
is met.

Proposal Generation. In higher-order graph cuts, it is crucial
for the success and efficiency of the optimization to provide
proposals that fit the energies being optimized. For higher-
order energies, it is even more so because they have a richer
class of null potentials. As mentioned above, using the outputs
of other algorithms as proposals allows a principled integration
of existing algorithms. In [12], a simple technique based on
the gradient of the energy is proposed for generating proposal
labelings that makes the algorithm much more efficient.

7 RELATIONS TO OTHER METHODS

In this section, we discuss other known higher-order energy
minimization methods that we found are closely related to the
techniques introduced above. Specifically, we first investigate
the binary transformation methods by Rother et al. [33] and
then the Pn Potts model by Kohli et al. [15].

Note that other known methods, e.g., the multilabel min-
imization using the selection functions by Rother et al. [33]
and the Robust Pn Potts model by Kohli et al. [14], do not
fall in this category as far as we can tell.
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7.1 Type-I and Type-II Transformation by Rother et
al.

As we mentioned in Section 5.3, by taking

λ = max
γ∈Bd

f (γ),

we can make all nonzero coefficients in the sum (17) nonpos-
itive. Thus, any PBF can be transformed to a quadratic PBF
using only the transformation (15), by making all coefficients
nonpositive first. It turns out that is essentially the same as
what are called the Type-I and Type-II transformations in
Rother et al. [33].

Let θ > 0,γ ∈ Bd and define ψ(x) by:

ψ(x) =

{
0, if x = γ,

θ , otherwise.

7.1.1 Type-I Transformation

Using (15), ψ(x) = θ −θx(γ)
1 · · ·x(γ)

d is reduced to

ψ(x) = θ +θ min
w∈B

w

{
d∑

i=1

(−1)γi xi +
∣∣I1

γ
∣∣−1

}

= θ +θ min
w∈B

w


∑
i∈I0

γ

xi +
∑
i∈I1

γ

(1− xi)−1


= θ min

w∈B

1+ vw+(1− v)
∑
i∈I0

γ

xi +w

∑
i∈I1

γ

(1− xi)−1


 ,

where we define v = w̄ = 1−w. Note that vw = 0 and also the
definition (13).

For x ∈ Bd ,v ∈ B, and w ∈ B, let us define

φ(x,v,w) = 1+ vw+(1− v)
∑
i∈I0

γ

xi +w

∑
i∈I1

γ

(1− xi)−1

 .

Then, we have

φ(x,0,0) = 1+
∑
i∈I0

γ

xi ≥ 1 = φ(x,1,0)

and

φ(x,1,1) = 1+
∑
i∈I1

γ

(1− xi) ≥ 1 = φ(x,1,0).

This implies that the minimum of φ(x,v,w) can always be
achieved with v and w opposite. That is, having two variables
v and w does not improve the minimization; freeing them
achieves at best the same minima as in the case when we
fix v = w̄. Thus, we have

ψ(x) = θ min
w∈B

φ(x, w̄,w) = θ min
v,w∈B

φ(x,v,w).

The last expression is the same as what is called the Type-I
transformation in [33], which is given in the paper as:

ψ(x) =

min
v,w∈B

θ

v+(1−w)− v(1−w)+
∑
i∈I0

γ

(1− v)xi +
∑
i∈I1

γ

w(1− xi)

 .

7.1.2 Type-II Transformation
In [33], the Type-II transformation is defined as:

ψ(x) = θ +
θ
2

min
w∈B

w(d −2)+w

∑
i∈I1

γ

(1− xi)−
∑
i∈I0

γ

(1− xi)



+(1−w)

∑
i∈I1

γ

xi −
∑
i∈I0

γ

xi

+
∑
i∈I0

γ

xi −
∑
i∈I1

γ

xi

 ,

which can be rewritten as

ψ(x) = θ +
θ
2

min
w∈B

w

{
d −2+

d∑
i=1

(−1)γi (2xi −1)

}
. (21)

Using (15), ψ(x) = θ −θx(γ)
1 · · ·x(γ)

d can also be written as

ψ(x) = θ +θ min
w∈B

w

{
d∑

i=1

(−1)γi xi +
∣∣I1

γ
∣∣−1

}

= θ +
θ
2

min
w∈B

w

{
d∑

i=1

(−1)γi ·2xi +
∣∣I1

γ
∣∣+ (d −

∣∣I0
γ
∣∣)−2

}

= θ +
θ
2

min
w∈B

w

{
d∑

i=1

(−1)γi(2xi −1)+d −2

}
,

which coincides with (21).

To summarize, both Type-I and Type-II transformations in
[33] are equivalent to (15), which is the γ-flipped version of the
higher-order transformation (9) based on those by Kolmogorov
and Zabih [17] and Freedman and Drineas [7].

7.2 Pn Potts Model by Kohli et al.
In [15], Kohli et al. define the class of the following form of
clique potential and call it the Pn Potts model:

fC(XC) =

{
νl , if Xv = l for all v ∈C,

νmax, otherwise,
(22)

where νl ∈ R is defined for each l ∈ L so that νmax ≥ νl .
We consider minimizing the energy (1) with the higher-

order clique potential (22), using the higher-order graph-cut
algorithm in Section 6, where the proposals emulate α-β -swap
and α-expansion. In the following, we ignore the constant and
linear energy terms.
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7.2.1 α-β -Swap
The α-β -swap algorithm can be emulated as follows. Assume
that we are in an iteration in the algorithm with the current
labeling X ∈ LV and let α,β ∈ L,α ̸= β . Let us denote

Cl = {v ∈C |Xv = l}, for l ∈ L,

Cγ = {v ∈C |γv = 1}, Cγ̄ = {v ∈C |γv = 0}.

We define the proposal labeling by

Pv =


α, if v ∈Cβ ,

β , if v ∈Cα ,

Xv, otherwise.

Let us consider the binary clique potential fC
(

X γ,P
C

)
for

clique C and binary labeling γ ∈ BC.
1. If Cα ∪Cβ = C,

fC
(

X γ,P
C

)
=


να , if Cγ̄ = Cα and Cγ = Cβ ,

νβ , if Cγ = Cα and Cγ̄ = Cβ ,

νmax, otherwise.

2. If C = Cl , where l ̸= α, l ̸= β , then

fC
(

X γ,P
C

)
= νl ,

since Pv = Xv = l for all v ∈C.
3. Otherwise, there is no way the whole clique would have

the same label after an α-β -swap. Hence,

fC
(

X γ,P
C

)
= νmax.

Remember the PBF E(y) in (20). We only have to consider
the nonconstant case 1), when

EC(yC) = νmax +δα
∏

v∈Cα

ȳv
∏

v∈Cβ

yv +δβ
∏

v∈Cα

yv
∏

v∈Cβ

ȳv,

where δα = να −νmax and δβ = νβ −νmax.
Since δα ≤ 0 and δβ ≤ 0, the energy can be reduced by (15)

as

δα
∏

v∈Cα

ȳv
∏

v∈Cβ

yv = min
uC∈B

δα uC

1−|Cβ |−
∑
v∈Cα

yv +
∑
v∈Cβ

yv

 ,

(23)

δβ
∏

v∈Cα

yv
∏

v∈Cβ

ȳv = min
wC∈B

δβ wC

1−|Cα |+
∑
v∈Cα

yv −
∑
v∈Cβ

yv

 .

(24)

The transformation adds new variables up to twice the number
of cliques. In practice, many cliques would be in cases 2)
or 3) above and have the constant νl or νmax as their binary
clique potential, reducing the number of variables in the binary
minimization problem.

Unless C = Cα or C = Cβ , neither (23) nor (24) falls in the
special cases that allow polynomial-time global minimization,
which we discussed in Section 5.2. However, for this particular
energy, we can systematically flip variables so that the whole
energy becomes globally optimizable. For instance, we can flip

all variables in Cβ , i.e., consider ȳv as the variable instead of
yv for all v ∈V such that Xv = β . Then, the same variables are
flipped regardless of which clique they appear in. The energy
then becomes

EC(yC) = νmax + min
uC∈B

δα uC

1−
∑
v∈Cα

yv −
∑
v∈Cβ

ȳv


+ min

wC∈B
δβ wC

1−|C|+
∑
v∈Cα

yv +
∑
v∈Cβ

ȳv

 ,

and, as we discussed in Section 5.2, this form of energy can
be globally minimized with graph cuts.

7.2.2 α-Expansion
Let us next consider using the proposal emulating α-
expansion, i.e.,

Pv = α for all v ∈V,

where α ∈ L. Let us also denote

Cᾱ = {v ∈C |Xv ̸= α}.

Assume that we are in an iteration in the algorithm, with
current labeling X ∈ LV . Then the clique potential for the
binary labeling γ ∈ BC would be:

fC
(

X γ,P
C

)
=


ν , if γv = 0 for all v ∈C,

να , if γv = 1 for all v ∈Cᾱ ,

νmax, otherwise,

where ν depends on the current labeling XC on the clique C:

ν =

{
νl , if Xv = l for all v ∈C,

νmax, otherwise.

Let us define δ = ν − νmax and δα = να − νmax. The
potential function EC(yC) in (20) would be:

EC(yC) = νmax +δ
∏
v∈C

ȳv +δα
∏

v∈Cᾱ

yv.

Since δ ≤ 0 and δα ≤ 0, the energy can be reduced by (15) as

δ
∏
v∈C

ȳv = min
uC∈B

δuC

(
1−
∑
v∈C

yv

)
, (25)

δα
∏
v∈C

yv = min
wC∈B

δα wC

∑
v∈Cᾱ

yv +1−|Cᾱ |

 . (26)

Thus, the transformation adds new variables twice the number
of cliques. In practice, the (25) part in E(y) vanishes for all
but those cliques where the current labeling assigns the same
label to all of the pixels in the clique.

Note also that (25) and (26) are the two special cases we
discussed in Section 5.2 that allow polynomial-time global
minimization.

Thus, we have reproduced the results described in Kohli et
al. [15], Section 4.3. That is, in optimizing the Pn Potts model
(22) with α-β -swap and α-expansion, the binary energy in
each iteration can be solved globally using graph cuts.
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8 EXPERIMENTS

As we discussed above, the Pn Potts model can be minimized
using the higher-order graph cuts. Moreover, since the con-
struction in Kohli et al. [15] and our algorithm both minimize
the binary energy exactly, the results should be the same,
except for the rare cases where there is more than one global
minima. Since their experiments in texture-based segmentation
uses the Pn Potts model, we can expect almost exactly the
same results if we used the same energy in our algorithm.

Here, we report the results of comparing with other al-
gorithms. The higher-order BP variants by Lan et al. [21]
and Potetz [28] were both tested using a particular higher-
order image restoration problem. We use the same problem
to compare the effectiveness of the higher-order graph-cut
algorithm with them.

8.1 Image Denoising with Fields of Experts

The image restoration scheme uses the recent image statistical
model called the Fields of Experts (FoE) [30], which captures
complex natural image statistics beyond pairwise interactions
by providing a way to learn an image model from natural
scenes. FoE has been shown to be highly effective, performing
well at image denoising and image inpainting using a gradient
descent algorithm.

The FoE model represents the prior probability of an image
X as the product of several Student’s t-distributions:

p(X) ∝
∏
C

K∏
i=1

(
1+

1
2
(Ji ·XC)2

)−αi

, (27)

where C runs over the set of all n×n patches in the image, and
Ji is an n×n filter. The parameters Ji and αi are learned from a
database of natural images. In both [21] and [28], 2×2 patches
were used to show that 2 × 2 FoE improves over pairwise
models significantly.

We are given the noisy image N ∈ LV and find the maximum
a posteriori solution given the prior model (27). The prior gives
rise to a third-order MRF, with clique potentials that depend
on up to four pixels. Since the purpose of the experiments
is not the image restoration per se, but a comparison of
the optimization algorithms, we use exactly the same simple
model as in the two predecessors.

It is an inference problem with a simple likelihood term:
image denoising with a known additive noise. We assume
that the images have been contaminated with an i. i. d.
Gaussian noise that has a known standard deviation σ . Thus,
the likelihood of noisy image N given the true image X is
assumed to satisfy

p(N|X) ∝
∏
v∈V

exp
(
− (Nv −Xv)2

2σ2

)
. (28)

To maximize the a posteriori probability p(X |N) given the
noisy image N, we have to maximize p(N|X)p(X), the product
of the likelihood and the prior probability.

8.2 Minimization Algorithm

We use the higher-order graph-cut algorithm described in
Section 6 with the following ingredients.

Initialization. We initialize X by N, the given noisy image.

Convergence Criterion. We iterate until the energy decrease
over 20 iterations drops below a convergence threshold θc. We
used the values θc = 8 for σ = 10 and θc = 100 for σ = 20.

Proposal Generation. For proposal P, we use the following
two in alternating iterations:
1. A uniform random image created each iteration.
2. A blurred image, which is made every 30 iterations by

blurring the current image X with a Gaussian kernel (σ =
0.5625).

For comparison, we also test the α-expansion proposal, i.e., a
constant image that gives the same value α everywhere.

Cliques. We consider the set C of cliques C = C1∪C4, where
C1 = {{v}|v ∈V} is the set of singleton cliques and C4 is the
set of all 2×2 patches in the image.

Energy. The local energy fC(XC) in (1) is defined by

f{v}(X{v}) =
(Nv −Xv)2

2σ2 , ({v} ∈ C1)

fC(XC) =
K∑

i=1

αi log
(

1+
1
2
(Ji ·XC)2

)
. (C ∈ C4)

These are negative logarithm of the clique potentials in the
likelihood (28) and the prior (27), respectively. Minimizing
this energy is the same as maximizing the a posteriori prob-
ability p(X |N) given the data N.

QPBO. For the QPBO algorithm, we used the C++ code
made publicly available by Vladimir Kolmogorov. We also
used the variations of QPBO included in the code.

8.3 Results

8.3.1 Qualitative Difference
Fig. 1 shows the qualitative difference between the denoising
results using first-order and third-order energies. Images in
Figs. 1a and 1b show the original image and the image with
noise added at σ = 20, respectively. All images in this figure
are 160× 240-pixel 8-bit grayscale images. Images in Figs.
1c and 1d show the result of denoising using α-expansion by
first-order energy

E(X) =
∑
v∈V

(Nv −Xv)
2 +λ

∑
(u,v)

Potts(Xu,Xv), (29)

where the pairwise Potts potential is defined for vertical and
horizontal neighbors u,v ∈V so that Potts(Xu,Xv) is 1 if Xu =
Xv and 0 otherwise; and λ = 250 for Fig. 1c and λ = 400 for
Fig. 1d. The image in Fig. 1e shows the result of denoising
by first-order total-variation energy:

E(X) =
∑
v∈V

(Nv −Xv)
2 +λ

∑
(u,v)

|Xu −Xv|. (30)
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The energy was globally minimized using the technique in [10]
with λ = 10. Finally, the image in Fig. 1f shows the result of
denoising by the FoE energy described above.

The Potts model favors piecewise-constant images, which
can be clearly seen in the results. If λ is small, much noise
remains, as in Fig. 1c. If we make λ larger, the result becomes
too flat, as in Fig. 1d. The total variation does a better job (as
in Fig. 1e), but the same dilemma as with the Potts model still
remains. The result (as in Fig. 1f) by the third-order energy
clearly is the best qualitatively.

Some more denoising examples are shown in Fig. 2.

8.3.2 Quantitative Comparison

For quantitative comparison, we measured the mean energy
and the mean peak signal-to-noise ratio (PSNR) for denoising
results over the same set of 10 images that were also used
in both [21] and [28]. The images are from the Berkeley
segmentation database [24], grayscaled and reduced in size,
as well as with the added Gaussian noise with σ = 10,20.
Here, PSNR = 20log10(255/

√
MSE), where MSE is the mean

squared error. The test images and the FoE model were kindly
provided by Stefan Roth, one of the authors of [21], [30]. Brian
Potetz also obliged by providing us with his results.

The PSNR and energy numbers are listed in Table 2. For
comparison, we also included the result by simple gradient
descent by [30]. The energy results show that the higher-order
graph cuts using the third-order energy outperforms the both
BP variants optimizing the same energy. The PSNR is also
comparable to [28] and better than [21]. Our algorithm takes
6-10 minutes (250−280 iterations) to converge on a 2.93 GHz
Xeon E5570 processor. By comparison, according to [28], it
took 30-60 minutes on a 2.2 GHz Opteron 275, while the
algorithm in [21] takes 8 hours on a 3 GHz Xeon. Thus,
our algorithm outperforms the two predecessors in quality
and speed, though BP is considered to be substantially more
parallelizable than graph cuts.

8.3.3 Comparison by Reductions, Proposals, and
QPBO Variations

Fig. 3 shows the behavior of some numbers during the
optimization when σ = 20. The three graphs show energy,
PSNR, and the ratio of pixels that is labeled by QPBO.

First, compare the solid dark-red diamonds and the solid
purple squares. They represent the two ways of handling
positive-coefficient terms in binary energy reduction, both
using the blur and random proposal and the QPBO algorithm.
Shown as the dark-red diamonds, using (11) in Theorem
1 is a little slower in this particular case. Flipping one
variable in a positive-coefficient term before reducing it by
the Kolmogorov-Zabih technique and then flipping the variable
back (see, for example, (19)) yields the purple square plot. It
is a little faster, due to the higher ratio of pixels labeled by
the QPBO algorithm, although it uses more memory because it
needs more (about 4.4 percent in this case) auxiliary variables.

Next, compare the two dark-red plots marked by hollow and
solid diamonds in each graph. These compare the blur and
random proposal (solid diamond) and α-expansion proposal,

using the QPBO algorithm. The result suggests that for higher-
order energies, α-expansion does not work very well. The
energy never reached the same level as the result using the blur
and random proposal. In the case of σ = 10, α-expansion did
go down to about the same energy level, but took significantly
longer. In the experiments using the blur and random proposal,
the average percentage of the pixels labeled by the QPBO
algorithm over two consecutive steps (blur step and random
step) starts around 50 percent and almost steadily goes up to
about 80 percent when σ = 20, and from 80 percent to almost
100 percent when σ = 10. The plot shows the zigzag shape
because in blur steps the ratio is consistently lower than the
random step. Using the α-expansion proposal, the ratio of the
labeled pixels is always less than 20 percent, resulting in a
slow decrease of energy that does not reach the same level as
the blur and random proposal.

Finally, disregard the α-expansion plot. The rest of the plots
(with solid marks) all use the same blur and random pro-
posal. They use different variations of the QPBO algorithms
introduced by Rother et al. [31]. Besides the plain QPBO, the
extended algorithms we tried are QPBOP and QPBOI. QPBOP
tries to label more pixels while preserving the global optimal-
ity. QPBOI goes further trying to approximate the solution.
The result shows that, while QPBOP tends to decrease energy
the most in a single step, in overall performance, QPBOI
works best because QPBOP takes more time at each step.

8.3.4 Comparison with Reduction by Substitution
When we use the “reduction by substitution” method explained
in Section 3.2, the percentage of labeled pixels stays at almost
zero percent, with averages 0.00018 percent and 0.091 percent
over 100 iterations for σ = 20 and 10, respectively, with almost
no energy reduction.

8.3.5 Comparison with Type-I and -II Transformations
We also tried the reduction we showed equivalent to the Type-
I and -II transformations by Rother et al. The percentage of
labeled pixels was very low (at most 2 percent), and most
of those labeled were labeled 0, leading to almost no energy
reduction. Perhaps this is not too surprising since, at degree
four, 15 extra variables are needed (compared to five in the
case of the new reduction) for each 4-pixel clique, as we listed
in Table 1.

9 CONCLUSIONS

In this paper, we have introduced a new transformation of
minimization problem of general Markov random fields with
binary labels into an equivalent first-order problem. In com-
bination with the fusion-move and QPBO algorithms, it can
be used to approximately minimize higher-order energies even
with more than two labels.

We have validated the technique by minimizing a third-
order potential for image denoising. The results show that
the algorithm exceeds the preceding BP algorithms in both
optimization capability and speed.

We have also investigated the relations between our method
and two similar methods. The binary energy reduction by
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TABLE 2
PSNR and Energy, averaged over 10 images using the same FoE model and different optimizations

Noise level Roth&Black [30] Lan et al. [21] Potetz [28] Our result

σ = 10 30.53 / 49068 30.36 / 40236 31.54 / 36765 31.44 / 35896

σ = 20 26.09 / 61284 27.05 / 33053 27.25 / 31801 27.43 / 30858

(a) (b) (c)

(d) (e) (f)

Fig. 1. Qualitative difference of denoising using cliques of different orders. (a) Original image. 160× 240 pixel 8-bit
grayscale. (b) Noise-added image (Gaussian i. i. d., σ = 20, PSNR = 22.31). (c)(d) Denoised using first-order Potts
model (29) and α-expansion with two smoothing factors (c) λ = 250 (PSNR = 23.55), (d) λ = 400 (PSNR = 23.66). (e)
Denoised using first-order Total Variation model (30) (PSNR = 25.67). (f) Denoised using third-order FoE model (PSNR
= 26.32).
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Fig. 2. More image restoration results. (Left column) Original images. The size is 240× 160 pixels. (Middle column)
Noisy images (σ = 20). PSNR=22.63 and 22.09 from top to bottom. (Right column) Restored images. PSNR=30.92
and 28.29 from top to bottom.
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Fig. 3. Comparison of reduction and proposal methods and QPBO variations. Plots during the restoration of the
example image in Fig. 1.

Rother et al. [33] turned out to be the same as a special case
of our generalized binary reduction. The Pn Potts model by
Kohli et al. [15] can also be approximately minimized within
our framework by finding exactly the optimal move in each
iteration.

Although we presented the transformation of binary energy
mainly in relation with the iterative algorithm that we call the
higher-order graph cuts, the transformation may be used in
combination with other algorithms. For instance, Ramalingam
et al. [34] give a transformation that can convert higher-order
multilabel MRF into a higher-order binary-label one. Then,
they use what we call the reduction by substitution to further
reduce the energy to first order. If the result of our experiments
with that reduction is any indication, our reduction should also
work better with their algorithm.
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