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“Graph Cut”
A.K.A. s-t mincut

An energy minimization method
Express tradeoffs by an energy

Application areas
Image restoration
Stereo
Segmentation
Motion analysis
Texture synthesis
Photo montage

Interactive segmentation

Rother et al.
SIGGRAPH2004



Boykov&Jolly
ICCV2001

Interactive segmentation

Wang et al. SIGGRAPH2005

Interactive segmentation



Texture synthesis

Kwatra et al. SIGGRAPH2003

Kwatra et al. SIGGRAPH2003

Texture synthesis



Interactive photomontage

Agarwala et al. SIGGRAPH2004

Stereo
Left Right Elevation map



History

Probablistic methods (SA, ICM,…) have been 
used for energy minimization

OR has used graph cut for ever

Was used for image processing in late 80’s

Introduced in vision in late 90’s
Some theoretical results rediscovered
(some were new)

Also used in graphics in recent years
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Example: Binary image restoration
Denoising

Only the noisy image Y is given

On what basis do we know what is noise?
We assume that the original image does not change too 
much between pixels (Smoothness assumption)

Close to the given image Y but not too rough

Express the Tradeoffs by an energy E( X )

XY
Close to Y Doesn’t change 

between pixels
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Find X that minimizes the energy

All pixels

Assigns Xv (= 0 or 1) to each pixel v

Example: Binary image restoration

XY

Neighboring
pixels

Close to Y Doesn’t change 
between pixels



Find X that minimizes the energy
Example: Binary image restoration
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隣接する
ピクセルの組

Neighboring pixels
0 if Yv = Xv
λ if Yv ≠ Xv

XY
0 0 0 λ
0 0 0 0
λ 0 0 0

XY

All pixels

Assigns Xv (= 0 or 1) to each pixel v

Close to Y Doesn’t change 
between pixels
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ピクセル全部
0 if neighbors are
the same; κ if not X

Find X that minimizes the energy
Example: Binary image restoration

XY

Assigns Xv (= 0 or 1) to each pixel v

Neighboring
pixels

Close to Y Doesn’t change 
between pixels

κκκ κ
κ



Energy minimization

In general, consider an energy of the form:

where    V is a set of sites
E is a set of neighboring pairs of sites
X assigns a label to each site in V

First order Markov Random Field (MRF)

Problem: Find the X that minimizes E(X )

Data term Smoothing term

∑∑
∈∈

+=
Evu

vuuv
Vv

vv XXhXgXE
),(

),()()(

Problem: Find the X that minimizes E(X )

The number of possible Xs is vast

Assignments of a label to each site in V

If V is 64×64 and labels are binary, 24096 (>101233) ways

The general problem is NP-Hard (Discovery of less-
than-exponential-time algorithm unlikely)

Traditional method: Monte Carlo

In some cases, Graph Cut can minimize globally

Energy minimization
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Graphs and their minimum cuts

Directed graph

G = (V, E )

V ：Finite set    E ⊂ V ×V
(Vertices) (Edges)

“Weight” on each edge

c: E→ R

u v(u,v)

u vc(u,v) =2

1 4

3
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Cost: 10

Graphs and their minimum cuts
Take two vertices s, t of a weighted directed graph G

A cut of G w.r.t s and t is a partition of the vertices

into two groups (S,T ) such that

V = S ∪ T,   S ∩ T = ∅

s∈S,  t∈T
Total sum of the weights
of the edges going from

S to T is called the cost of (S,T )

Among the cuts of G with respect to s and t, ones 
with the smallest cost are called the minimum cuts

Mincut = Maxflow
Ford & Fulkerson Theorem (1956)
Consider water flow from 
s to t, supposing the weight as
the capacity of pipes

Minimum cuts are given by the

saturated edges for maximum flows

Minimum cut
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Among the cuts of G with respect to s and t, ones 
with the smallest cost are called the minimum cuts

Mincut = Maxflow

When the weights are all nonnegative, Maxflow
can be found in polynomial time

The number of possible cuts ~ 2number of vertices

Minimum cut

Contents

Overview / Brief history

Energy minimization 

Graphs and their minimum cuts 

Energy minimization via graph cuts 

Global minimization 

Approximation methods 

Energy design for graph cut 



||)()(
),(

vu
EvuVv

vv XXXgXE −+= ∑∑
∈∈

κ

v
)1(vg

)0(vg
Cut

s

tXv = 0

Xv = 1

Graph-cut minimization (binary)
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Xv = 0

Xv = 1

Cut

s

t

Graph-cut minimization (binary)



Image plane graph

2D case

s

t



3D case

s

t

One to one correspondence between X and cut

Energy = Cut cost

Find minimum cut to minimize energy

The weights must be all nonnegative

s

t

s

t

X  0 1 1 0 1 1 1 0 0 1 1 X  1 1 1 0 0 0 0 0 1 0 0

Graph-cut minimization (binary)



The weights must be all nonnegative

can be arbitrary
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Graph-cut minimization (binary)

The weights must be all nonnegative

can be arbitrary

must satisfy
Submodularity condition
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Graph-cut minimization (binary)
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The weights must be all nonnegative
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Graph-cut minimization (binary)

)0,1()1,0()1,1()0,0( uvuvuvuv hhhh +≤+

The weights must be all nonnegative

Add same value for all 4 cases
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Graph-cut minimization (binary)
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The weights must be all nonnegative

can be arbitrary

must satisfy
Submodularity condition

Long known in OR
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Graph-cut minimization (binary)
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When there are >2 labels

If labels have an order：
Globally minimizeable is a convex

function of
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Graph-cut minimization (multi-value)
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Graph-cut minimization (multi-value)

i

3

2

1

0

s

t

gv(l0)

gv(l1)

gv(l2)

gv(l3)

||),( jillh jiuv −= κ

i

3

2

1

0

∑∑
∈∈

+=
Evu

vuuv
Vv

vv XXhXgXE
),(

),()()(

s

t

Graph-cut minimization (multi-value)
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The smoothing term must be convex

Approximation algorithms 
α -β swap / α expansion (Boykov, Veksler, Zabih)
Guaranteed to get within the
factor 2c of global minima

The Potts model (discriminate only same or not): c =1
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Graph-cut minimization (multi-value)

good good bad



Approximation by iteration
Decide whether or not to move the assignment, all 
at once for all pixels, by using binary graph cut
α -β swap

Allow swap only when current label is α or β
Applicable when the following holds for all α,β∈L

α expansion
Allow only change to α
Applicable when the following holds for all α,β,γ∈L

),(),(),(),( αββαββαα uvuvuvuv hhhh +≤+

),(),(),(),( αβγαγβαα uvuvuvuv hhhh +≤+

Graph-cut minimization (multi-value)

α expansion moves

initial solution

-expansion

-expansion

-expansion

-expansion

-expansion

-expansion

-expansion

In each α expansion a given label “α ” grabs space 
from other labels

For each move we choose expansion that gives the largest 
decrease in the energy: binary optimization problem

Courtesy Yuri Boykov



current
label

α

Optimal α expansion move

1D 
example

Courtesy Yuri Boykov

1. Start with any initial solution
2. For each label  α in any (e.g. random) order

1. Compute optimal α expansion move
(s-t graph cuts)

2. Decline the move if there is no energy decrease

3. Stop when no expansion move would decrease 
energy

α expansion algorithm

Courtesy Yuri Boykov



α expansion algorithm vs. standard 
discrete energy minimization techniques

Single α expansion moveSingle “one-pixel” move
(Simulated Annealing, ICM,…)

Large number of pixels can 
change their labels 
simultaneously

Finding an optimal move is 
computationally intensive  

Only one pixel can change its 
label at a time

Finding an optimal move is 
computationally trivial

Courtesy Yuri Boykov

original image

α-expansion move vs.“standard” moves

a local minimum
w.r.t. expansion moves

a local minimum
w.r.t. “one-pixel” moves

noisy image

Potts energy minimization

Courtesy Yuri Boykov
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5 decisions for energy design

Example: Denoising
Sites

Pixels
Neighborhood structure

Pixel neighborhood structure
Labels

Pixel colors
Data term: How to reflect the given data

Make X closer to the given (noisy) image
Smoothing term：Desired propeties for X

Make neighboring pixels closer
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The space of X :
Assignmnets of a 
label to each site



α -β swap α expansion

Boykov et  al. PAMI 2001

ground truthSimulated Annealing

Disparity

Example 1: Stereo

Sites
Pixels of one of the images

Neighborhood structure
Pixel neighborhood structure

Labels
Disparities

Data term
Compare pixels displaced according to the disparity

Smoothing term
Smooth the disparities across neighbors
But also want to allow discontinuities at object boundaries
Make smaller where intensity changes abruptly
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Example 1: Stereo



Sites
Pixels

Neighborhood structure
Pixel neighborhood structure

Labels
Foreground or background (0 or 1)

Data term
Locally assesses from the color of the pixel whether it is 
more like the foreground or the background

Smoothing term
Smooth the labels across neighbors
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Example 2: Segmentation

Data term: Creates histograms of the user-specified 
fore- and background sample pixels
Evaluates how likely to be fore- or background

is normalized

: FG histogram : BG
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Example 2: Segmentation
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Smoothing term: Potts (Penalty is smaller if the 
color changes more between neighbors)

Meant to cut where there is a strong contrast
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Does not depend
on labels

Example 2: Segmentation

Automatic

User
interaction

segmentation

Rother et al.
SIGGRAPH2004

Example 2: Segmentation

Automatic
segmentation



Agarwala et al. SIGGRAPH2004

Example 3: Photomontage

Example 3: Photomontage

Agarwala et al. SIGGRAPH2004



Sites/Neighborhood
Pixel/Pixel neighborhood structure

Labels
Which source picture (1, 2, ..., k)

Data term
Where a source picture is specified, a constant penalty 
for other labels

0 elsewhere
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Example 3: Photomontage

Smoothing term
Makes boundary invisible (Reverse of segmentation)

Penalty is smaller if the color is closer
Other cues (e.g. color gradient) could be matched

))(),(dist())(),(dist(),( vIvIuIuImlh mlmluv +=

Example 3: Photomontage



Rother et al. CVPR2005

Example 4: Digital Tapestry

Divide both tapestry and source into blocks
Site: tapestry blocks
Neighborhood: All pairs&block neighbors (later)
Labels: Pairs of (source image, block shift)

Source 1

Source 2

shift −2

(1,−2) (1,−2) (2,1) (2,1)(1,−2) (1,−2) (2,1) (2,1)(1,−2) (1,−2) (2,1) (2,1)

Example 4: Digital Tapestry

shift 1



Data term: Block saliency (really the contrast)
Central blocks are considered more salient than peripherals

Smoothing term:
Each source block used once (All sites are neighbors）
Neighboring block compatibility (Neighbor on tapestry)

(1,−2) (1,−2) (2,1) (2,1)(1,−2) (1,−2) (2,1) (2,1)(1,−2) (1,−2) (2,1) (2,1)

Source 1

Source 2

shift −2

Example 4: Digital Tapestry

shift 1

This has been an introduction, but...

Graph cut is an ongoing research area

Recent topics include

α -β range moves (Veksler CVPR2007)

Uses multi-label GC to minimize truncated convex potential

QPBO (Boros, Hammer, et al. RUTCOR Report RRR 
10-2006; Kolmogorov&Rother CVPR2007)
Minimizes even nonsubmodular energies where possible

Fusion moves (Lempitsky et al. ICCV2007)

Fuses current and proposed configurations à la α expansion

Higher-order energies (Ramalingam et al. CVPR2008)



Conclusion
Graph cut: energy minimization

Energy form dictates applicable algorithm
Binary (Submodular → global optimization)

Multi label (Global optimization in some cases)

Multi label (Approximation algorithms)

Some energy can be minimized globally

Approximations applicable to more general cases 
are often better than classical methods, e.g., SA

Code available at Kolmogorov's website:
http://www.adastral.ucl.ac.uk/~vladkolm/software.html


