Probabilistic Graphical Model Workshop: Sparsity, Structure and High-dimensionality

The Institute of Statistical Mathematics, Tokyo, Japan March 23-25, 2016.

MAP Estimation of Markov Random Fields With Some Applications in Medical Imaging

Hiroshi Ishikawa Department of Computer Science & Engineering Waseda University

Outline

- Graph cuts
 - Uses minimum-cut algorithm for energy minimization
- Higher-order energy minimization
 - Binary labels: reduce to first order
 - Add variable
 - Some with ELC
 - Then use graph cuts
- Segmentation with shape prior
 - Shape restriction enables better segmentation
 - Realized by higher-order energy potential
 - Pulmonary Artery-Vein Segmentation
 - Coronary Lumen and Plaque Segmentation

Segmentation Trade-off

- X: assigns $X_v = 0$ or 1 to each point v
- Faithfulness to Data at each point
 - More likely to be foreground or background?
- Prior model / regularization
 - Assume smoothness

Optimization

- X: assigns $X_v = 0$ or 1 to each point v
- Define a function E(X) so that
 - Better segmentation X has lower E(X)
- Sum of conflicting functions
 - Data
 - Smoothness

Example

Consider

$$E(X) = \sum_{v \in V} g_v(X_v) + \sum_{(u,v) \in E} h_{uv}(X_u, X_v)$$

- $g_v(X_v)$ low when X_v matches the color
- $h_{uv}(X_u, X_v)$ low when smooth

Markov Random Field

- Graph G = (V, E)
 - V : each $v \in V$ has an L-valued random variable X_v
 - E : represents dependence
- Set of cliques in V
- Probability distribution of MRF $P(X) = \frac{1}{Z} \prod_{C \in \mathscr{C}} q_C(X_C) = \frac{p(X)}{Z}$ $Z = \sum_{X \in \mathscr{X}} \prod_{C \in \mathscr{C}} q_C(X_C) = \sum_{X \in \mathscr{X}} p(X)$

Markov Random Field

Rewrite the MRF probability distribution

$$P(X) = \frac{1}{Z} \prod_{C \in \mathscr{C}} q_C(X_C) = \frac{p(X)}{Z}$$
$$p(X)$$

as

$$p(X) = e^{-E(X)}$$
 Energy

$$E(X) = \sum_{C \in \mathscr{C}} f_C(X_C)$$
Potential

First order MRF

• The simplest (interesting) MRF Geman & Geman 1984; Besag 1986

Model neighborhood relation

$$\mathscr{C} \approx V \cup E$$

$$p(X) = \prod_{v \in V} \psi_v(X_v) \prod_{(u,v) \in E} \phi_{uv}(X_u, X_v)$$

• Energy

 $E(X) = \sum_{v} f_{C}(X_{C}) = \sum_{v} g_{v}(X_{v}) + \sum_{v} h_{uv}(X_{u}, X_{v})$ Cel $(u,v) \in E$ $v \in V$

Energy Minimization

$$E(X) = \sum_{v \in V} g_v(X_v) + \sum_{(u,v) \in E} h_{uv}(X_u, X_v)$$

- Problem: Find the X that minimizes E(X)
- Possible X
 - Combinations of labeling the sites (pixels)
 - If V is 64×64 and $X: V \to \{0,1\}, 2^{4096} > 10^{1233}$
- NP-Hard in general
- Old method: Monte Carlo
- For some form of energy, Graph-cut algorithms can globally minimize

Graphs and cuts

- Choose $s, t \in \mathcal{V}$
- Cut: partition $\mathcal{V} = S \cup T$ $S \cap T = \emptyset, s \in S, t \in T$
- Cost of cut: sum of the weights of the edges going from S to T
- Minimum cut: the cut with the minimum cost
- When all weights ≥ 0, the minimum cut can be found efficiently

11

Image Plane Graph

s of

• 1:1 correspondence between X and cuts

- Energy = Cut cost
- Minimum cut \rightarrow Energy minimization
- The weight must be ≥ 0

- The edge weight must be ≥ 0
 - What energy can be minimized?

$$E(X) = \sum_{v \in V} g_v(X_v) + \sum_{(u,v) \in E} h_{uv}(X_u, X_v)$$

• $g_v(x)$ is arbitrary

$$g_{v}(0) = -2$$
 + 5
 $g_{v}(1) = -5$ 5

- The edge weight must be ≥ 0
 - What energy can be minimized?

$$E(X) = \sum_{v \in V} g_v(X_v) + \sum_{(u,v) \in E} h_{uv}(X_u, X_v)$$

- $g_v(x)$ is arbitrary
- What about $h_{uv}(X_u, X_v)$?

Submodularity condition $h_{uv}(0,0) + h_{uv}(1,1) \le h_{uv}(0,1) + h_{uv}(1,0)$

$$E(X) = \sum_{v \in V} g_v(X_v) + \sum_{(u,v) \in E} h_{uv}(X_u, X_v)$$
$$h_{uv}(0,0) + h_{uv}(1,1) \le h_{uv}(0,1) + h_{uv}(1,0)$$

u v

$$0 \quad 0 \quad h_{uv}(1,0) - h_{uv}(1,1)$$

$$\begin{array}{ccc} 0 & 1 & \frac{h_{uv}(0,1) + h_{uv}(1,0)}{-h_{uv}(0,0) - h_{uv}(1,1)} \end{array}$$

$$1 \quad 0 \quad \frac{2h_{uv}(1,0) - h_{uv}(0,0)}{-h_{uv}(1,1)}$$

 $1 \quad 1 \quad h_{uv}(1,0) - h_{uv}(0,0)$

$$E(X) = \sum_{v \in V} g_v(X_v) + \sum_{(u,v) \in E} h_{uv}(X_u, X_v)$$

$$h_{uv}(0,0) + h_{uv}(1,1) \le h_{uv}(0,1) + h_{uv}(1,0)$$

Add the same value to all 4 cases

$$h_{uv}(0,1) + h_{uv}(1,0) - h_{uv}(1,1) = 0 = 0 = h_{uv}(0,0)$$

$$-h_{uv}(0,0) - h_{uv}(1,1) = h_{uv}(1,1) = 0 = 0 = h_{uv}(0,0)$$

$$u = 0 = 0 = 0$$

$$h_{uv}(1,0) - h_{uv}(0,0) = 1 = 0 = 0 = 0$$

$$h_{uv}(1,0) - h_{uv}(0,0) = 1 = 1 = h_{uv}(1,1)$$

Graph Cuts (Multi-label case) (> 2 labels)

$$E(X) = \sum_{v \in V} g_v(X_v) + \sum_{(u,v) \in E} h_{uv}(X_u, X_v)$$

- If the labels has linear order $L = \{l_0, l_1, ..., l_k\}$
- Globally minimizable $\Leftrightarrow h_{uv}(l_i, l_j)$ is a convex function of i j i

Ishikawa, IEEE TPAMI 2003

Outline

- Graph cuts
 - Uses minimum-cut algorithm for energy minimization
- Higher-order energy minimization
 - Binary labels: reduce to first order
 - Add variable
 - Some with ELC
 - Then use graph cuts
- Segmentation with shape prior
 - Shape restriction enables better segmentation
 - Realized by higher-order energy potential
 - Pulmonary Artery-Vein Segmentation
 - Coronary Lumen and Plaque Segmentation

First-order (pairwise) energy

53 Good

14 Bad

Higher-order energy

Higher-order energy

Higher-order energy

$$E(X) = \sum_{C \in C} f_C(X_C)$$

$$= \sum_{v \in V} g_v(X_v) + \sum_{(u,v) \in E} h_{uv}(X_u, X_v)$$

$$+ \sum_{(u,v,s,t)} k_{uvst} (X_u, X_v, X_s, X_t)$$

Better (Lower Energy)
B

Reducing higher-order energy

Convert any higher-order binary energy

$$E(X) = E(X_1, \dots, X_n) = \sum_{C \in \mathscr{C}} f_C(X_C)$$

into an equivalent first-order energy

$$\tilde{E}(X) = \tilde{E}(X_1, \dots, X_n, \dots, X_m) = \sum g_v(X_v) + \sum h_{uv}(X_u, X_v)$$

Adds variables

Functions of binary variables

- Pseudo-Boolean function (PBF)
 - Function of binary (0 or 1) variables
 - Can always write it uniquely as a polynomial
- One variable x: $E_0(1-x) + E_1x$
- Two variables x, y:

 $E_{00}(1-x)(1-y) + E_{01}(1-x)y + E_{10}x(1-y) + E_{11}xy$

Three variables x, y, z:

 $E_{000}(1-x)(1-y)(1-z) + E_{001}(1-x)(1-y)z + \dots + E_{111}xyz$

2nd-Order (Cubic) Case

 Reduce cubic PBF into quadratic one using

$$xyz = \max_{w \in \{0,1\}} w(x + y + z - 2)$$

000
$$0 = \max_{w \in \{0,1\}} w(-2) = \max\{0,-2\} = 0$$

001
$$0 = \max_{w \in \{0,1\}} w(-1) = \max\{0, -1\} = 0$$

011
$$0 = \max_{w \in \{0,1\}} w \cdot 0 = 0$$

111
$$1 = \max_{w \in \{0,1\}} w \cdot 1 = \max\{0,1\} = 1$$

2nd-Order (Cubic) Case

 Reduce cubic PBF into quadratic one using

$$xyz = \max_{w \in \{0,1\}} w(x + y + z - 2)$$

If
$$a < 0$$
, $axyz = \min_{w \in \{0,1\}} aw(x + y + z - 2)$

Thus $\min_{x,y,z\in\{0,1\}} axyz = \min_{x,y,z,w\in\{0,1\}} aw(x+y+z-2)$

So, in a minimization problem, we can substitute axyz by aw(x + y + z - 2)cubic quadratic Higher-Order Case

$$xyz = \max_{w \in \{0,1\}} w(x + y + z - 2)$$

$$xyzt = \max_{w \in \{0,1\}} w(x + y + z + t - 3)$$

$$xyztu = \max_{w \in \{0,1\}} w(x + y + z + t + u - 4)$$

$$x_1 \cdots x_d = \max_{w \in \{0,1\}} w(x_1 + \dots + x_d - (d-1))$$

min $ax_1 \cdots x_d = \min aw(x_1 + \dots + x_d - (d-1))$

if *a* < 0

Positive Case

$$x_1 \cdots x_d = \min_{w_1, \dots, w_{n_d}} \left\{ \sum_{i=1}^{n_d} w_i \left(k_i^d \left(-S_1 + 2i \right) - 1 \right) \right\} + S_2$$
quadratic

$$n_{d} = \begin{bmatrix} \frac{d-1}{2} \end{bmatrix} \qquad k_{i}^{d} = \begin{cases} 1 & d \text{ is odd and } i = n_{d} \\ 2 & \text{otherwise} \end{cases}$$
$$S_{1} = \sum_{i=1}^{d} x_{i} \qquad S_{2} = \sum_{i=1}^{d-1} \sum_{j=i+1}^{d} x_{i} x_{j}$$

Elementary symmetric polynomials

Thus,

$$\min ax_1 \cdots x_d = \min a \left\{ \sum_{i=1}^{n_d} w_i \left(k_i^d \left(-S_1 + 2i \right) - 1 \right) \right\} + aS_2$$

if $a > 0$

Ishikawa CVPR 2009, PAMI 2011

Experiment: 4th deg. FoE denoising

Original

Noise added

4th degree

Discussion

- # of added variables increases exponentially with the degree
- In general, this is inevitable
 - Degree $d \Rightarrow$ can take 2^d different values in general
- But we don't have to have the same exact function
 - All we want is the minimizer

Reduce Without Adding Variables

Convert many higher-order binary energies

$$E(X) = E(X_1, \dots, X_n) = \sum_{C \in \mathscr{C}} f_C(X_C)$$

into an equivalent first-order energy

$$\tilde{E}(X) = \tilde{E}(X_1, \dots, X_n) \qquad) = \sum g_v(X_v) + \sum h_{uv}(X_u, X_v)$$

- Without adding variables
- Hows

Ishikawa CVPR 2014

Example: a cubic term

• $\varphi(x, y, z)$: cubic (3rd degree)

 $\varphi(0,0,0) = a, \varphi(1,0,0) = b, \varphi(0,1,0) = c, \varphi(1,1,0) = d,$ $\varphi(0,0,1) = e, \varphi(1,0,1) = f, \varphi(0,1,1) = g, \varphi(1,1,1) = h$

•
$$\varphi(x, y, z) = a(1-x)(1-y)(1-z) + bx(1-y)(1-z)$$

+ $c(1-x)y(1-z) + dxy(1-z) + e(1-x)(1-y)z$
+ $fx(1-y)z + g(1-x)yz + hxyz$

• xyz coefficient: s = -a + b + c - d + e - f - g + h

Define new function:

 $\varphi'(x, y, z) = \begin{cases} \varphi(x, y, z) & when (x, y, z) \neq (0, 0, 0) \\ \varphi(0, 0, 0) + s & when (x, y, z) = (0, 0, 0) \end{cases}$

i.e., value is added s only when (x, y, z) = (0,0,0)

Example: a cubic term

Define new function:

 $\varphi'(x, y, z) = \begin{cases} \varphi(x, y, z) & when (x, y, z) \neq (0, 0, 0) \\ \varphi(0, 0, 0) + s & when (x, y, z) = (0, 0, 0) \end{cases}$

i.e., value is added s only when (x, y, z) = (0,0,0)

- New xyz coefficient (replace a with a + s): s' = -(a + s) + b + c - d + e - f - g + h = s - s = 0
- So φ' is now quadratic (2nd degree)
- Similarly, we can reduce the degree by changing one of the 8 possible values
- But φ and φ' are different functions!

When can we do this?

 $\varphi'(0,0,0) = a + s, \varphi'(1,0,0) = b, \varphi'(0,1,0) = c, \varphi'(1,1,0) = d,$ $\varphi'(0,0,1) = e, \qquad \varphi'(1,0,1) = f, \varphi'(0,1,1) = g, \varphi'(1,1,1) = h$

- Different only when (x, y, z) = (0,0,0)
- Suppose φ is a potential in $E(X) = \sum f_C(X_C)$
 - x, y, z are three of the variables in X
- If
 - *s* > 0, and
 - For minimizer X of E(X), $(x, y, z) \neq (0,0,0)$,

then, we can replace φ with φ' without changing the minimizer

ELC

- Excludable Local Configuration (ELC)
 - Configuration = assignment of 0 or 1 to vars
 - A (usually) locally-testable sufficient condition for local configuration (x, y, z) to be not part of global minimizer
 - "Excludable as a part of global minimizer"
- ELC may not exist
- May take time to find
- Approximation
 - Just use the local configuration (x, y, z) with the largest value φ(x, y, z)

Ishikawa CVPR 2014

Experiment: 4th deg. FoE denoising

Number of variables after conversion

Experiment: 4th deg. FoE denoising

- ELC exists:
 - 3rd degree: 96.12%
 - 4th degree: 99.60%
- Approximation:
 - Guessed configuration is in fact an ELC
 - 3rd degree: 88% of the time
 - 4th degree: 97% of the time
 - Even if it is not an ELC, it is not part of minimizer
 - 3rd degree: 99.98%
 - 4th degree: 99.997%
 - 99.99988% of (labeled) pixels correctly labeled

Outline

- Graph cuts
 - Uses minimum-cut algorithm for energy minimization
- Higher-order energy minimization
 - Binary labels: reduce to first order
 - Add variable
 - Some with ELC
 - Then use graph cuts
- Segmentation with shape prior
 - Shape restriction enables better segmentation
 - Realized by higher-order energy potential
 - Pulmonary Artery-Vein Segmentation
 - Coronary Lumen and Plaque Segmentation

Higher-order energy: special form

- Special form of binary-valued higher-order energy
 - $f_C(X_C) = f_C(x_1, \cdots, x_k) = -\alpha x_1 \cdots x_k$
 - Takes $-\alpha < 0$ only when all variables are 1, Takes 0 otherwise
 - $f_C(X_C) = f_C(x_1, \dots, x_k) = -\alpha(1 x_1) \cdots (1 x_k)$
 - Takes $-\alpha < 0$ only when all variables are 0, Takes 0 otherwise
- A function of this form is converted to a submodular first-order function

Fully-automatic Pulmonary Artery-Vein Segmentation

Kitamura, Li, Ito, Ishikawa, IJCV2015

Data-Dependent Clique Potential

- Arrange higher-order terms adaptively with data
- Straighter cliques has lower energy

Segmentation Results

Difference by the higher-order terms

Without the Higher–Order Terms Red: Correctly labeled as artery

With the Higher–Order Terms Blue: Correctly labeled as vein Yellow: Incorrectly labeled

Pre-Surgery Simulator

Coronary Lumen and Plaque Segmentation from CTA

Center line detection

Reconstruction along the center line (3D)

Kitamura, Li, Ito, Ishikawa, MICCAI2014

Coronary Lumen and Plaque Segmentation from CTA

Difficult with first-order energy

1 Hard plaque Strong edges attract the contour

② Soft plaque Low contrast hard to discern

Higher-Order Shape Restriction

- Blood vessel cross section is round
- Generate circular candidate shapes
- Give lower energy for each shape when
 - All voxels outside the shape are labeled background
 - All voxels inside the shape are labeled foreground

Red: Realized shape restriction (after energy minimization) Green: Unrealized shape restriction Blue: Segmentation result

Segmentation Results

Segmentation Results

Currently Top-ranked in the Rotterdam Coronary Artery Stenoses Detection and Quantification Evaluation Framework

Conclusion

- Graph cuts
 - Uses minimum-cut algorithm for energy minimization
- Higher-order energy minimization
 - Binary labels: reduce to first order
 - Add variable
 - Some with ELC
 - Then use graph cuts
- Segmentation with shape prior
 - Shape restriction enables better segmentation
 - Realized by higher-order energy potential
 - Pulmonary Artery-Vein Segmentation
 - Coronary Lumen and Plaque Segmentation

Excludable Local Configuration

• For any binary energy

$$E(X) = E(x_1, ..., x_n) = \sum_{C \in C} \alpha_C x_C$$
and $C \in C$, denote

$$E_C(X) = \sum_{D \in C, C \cap D \neq \emptyset} \alpha_D x_D$$

• **Definition** A value assignment $u \in \mathbb{B}^{C}$ is said to be an excludable local configuration (ELC) if there exists another assignment $v \in \mathbb{B}^{C}$ such that

$$\max_{X \in \mathbb{B}^n, |X|_C = v} E_C(X) < \min_{X \in \mathbb{B}^n, |X|_C = u} E_C(X)$$

where $X|_C \in \mathbb{B}^C$ is the restriction of $X \in \mathbb{B}^n$ to C

Excludable Local Configuration

• **Theorem** If $u \in \mathbb{B}^C$ is an ELC, then

$$\min_{X\in\mathbb{B}^n} E(X) < \min_{X\in\mathbb{B}^n, |X|=u} E(X)$$

In other words, no minimizer X of the energy takes the local configuration u on C.

$$E_C(X) = \sum_{D \in \mathcal{C}, \ C \cap D \neq \emptyset} \alpha_D x_D$$

• So, if an ELC $u \in \mathbb{B}^{C}$ can be found, adding $\psi(v) = \begin{cases} 0 & when v \neq u \\ s > 0 & when v = u \end{cases}$ to the energy does not change the minimizer

Details

- Usable ELC depends on:
 - Sign of the coefficient of the highestdegree term
 - Parity of the ELC
- xyz coefficient s = -a + b + c - d + e - f - g + h