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GLOBALLY OPTIMAL REGIONS AND BOUNDARIES
AS MINIMUM RATIO WEIGHT CYCLES

IAN H. JERMYN AND HIROSHI ISHIKAWA

Abstract. We describe a new form of energy functional for the modelling and identifica-
tion of regions in images. The energy is defined on the space of boundaries in the image
domain, and can incorporate very general combinations of modelling information both from
the boundary (intensity gradients,. . . ), and from the interior of the region (texture, homo-
geneity,. . . ).

We describe two polynomial-time digraph algorithms for finding the global minima of
this energy. One of the algorithms is completely general, minimizing the functional for any
choice of modelling information. It runs in a few seconds on a 256× 256 image. The other
algorithm applies to a subclass of functionals, but has the advantage of being extremely
parallelizable. Neither algorithm requires initialization.

1. Introduction

One of the fundamental problems in image understanding is to identify regions in images
with particular semantic content. It is safe to say that if there was a mechanism to answer
reliably the question “What are the regions in the image that correspond to instances of
O?”, where O is some named class of objects, then many other tasks in image understanding
would be greatly simplified.

Approaches to this problem, which of course is very far from being solved, tend to break
into two categories. One approach is to segment the image globally, partitioning the image
domain into labelled subsets based on some, usually generic criteria, with the hope that
subsequent processing can group and split these regions using more sophisticated models,
and hence decompose the image domain into recognisable objects. These methods search a
space of maps from the image domain to some other space.

Another approach to the same problem involves trying to identify objects in an image
directly, by searching a space of structures mapped into the image. Here the emphasis is
on modelling the properties of the regions occupied by objects from the outset, to various
different levels of genericity. Examples of this approach are template-matching methods, and
the many variations on active contours.

Although these approaches are not mathematically entirely distinct (a region can always
be modelled by its characteristic function, which is a field on the image), they do correspond
conceptually to distinctions in the human visual system. It seems likely for example [26, 29]
that human perception of motion is based both on generic low-level computations, as well as
on the identification and tracking of specific objects. They also lead to different visions of how
to proceed: in the one case, the development of mechanisms to perform further organization
of the generic segmentation; in the other, the development of more sophisticated and specific
models for individual regions. The two approaches are in any case complementary, since
generic segmentations can be used to inform the object models, as well as vice-versa.
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Many of these methods are explicitly or implicitly framed as optimization problems. The
difficulty is that these optimization problems cannot in general be solved globally, meaning
that the solutions that are found have an unknown dependence on initial conditions. In
the case of segmentation methods, this usually takes the form of a choice of a number of
region seeds, whereas for active contours an initial contour is necessary. For contours, the
only problem that has hitherto been solved globally for general energies is that of finding an
optimal curve joining two given points. A priori such curves do not allow the identification
of regions, requiring further processing to group them into boundaries.

Unfortunately, the problem of finding a globally optimal boundary in an image without
loss of descriptive power in the model cannot trivially be solved by the application of the same
kind of techniques that work in the open curve case. The topological constraint of closure
is not so easily incorporated into these local algorithms. In addition, there are obstructions
to solving the problem of globally minimizing the linear form of energy typically used for
active contours, to wit, the elimination of self-intersections and repeated segments, and
the existence of trivial solutions. (We discuss these issues more fully in section 4.1.) It is
therefore of interest to have a model of region identification for which the global solution can
be known, in order to form some judgement of the relevance of the solution for the image as
a whole, independent of the initial conditions.

In addition, many of the above models utilise only one of two possible sources of informa-
tion about the region: the properties of the interior or of the boundary. Many segmentation
methods partition the image domain based on the similarity and dissimilarity of interior
properties such as colour, intensity, or texture measures, while active contour methods typi-
cally utilise boundary properties such as intensity gradients. This distinction is by no means
absolute, and many methods do introduce both types of information. This is often done on
an ad hoc basis however, and the resulting optimization problems are almost never solved
globally.

Motivated by the above considerations, and by psychological work, which since the Gestalt
movement has emphasized the importance of contour closure in human vision [13, 14, 18, 6, 7],
we propose an energy functional on boundaries in images that takes the form of a ratio of two
integrals around the boundary. Our approach thus falls into the second category discussed
above, that of region identification. (Curious readers may wish to look ahead to equation 1
at this point.) The numerator of the energy is a measure of the ‘flow’ of some quantity, for
example intensity, into or out of the region, while the denominator is a generalised measure
of the length of the boundary. This form turns out to have unexpected benefits. First,
it solves the global optimisation problem: every instance of this form of energy can be
globally optimised in polynomial time by the same graph algorithm, but the energy still
allows for the incorporation of very general types of modelling information. In particular,
because the energy is defined on closed curves and the numerator is a measure of flow, region
information such as area, homogeneity and texture can be included in the energy as easily
as can boundary information such as gradients, by the use of Green’s theorem.

Two other properties of the energy are contingent on the exact nature of the region and
boundary properties modelled. Simple but useful instances, and in particular the case where
we incorporate information about boundary intensity gradients and boundary length only, are
parameter-free, both at the level of the model and the algorithm. Despite being parameter-
free, these instances include both data and regularisation terms; they eliminate a parameter
by being a ratio of the two, rather than a linear combination as in standard active contour
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energies. As will be seen in section 4, this behaviour is equivalent to automatic parameter
selection for the linear active contour energy. More complex instances of the energy are of
course parameterized.

A second contingent property, which we explore more fully in section 3.3, arises because
the energy is a ratio of two integrals around the boundary: it can be ‘scale-invariant’. By
scale-invariant we mean that boundaries with different lengths but lying on the same data
have the same energy, meaning that the energy does not have a bias towards long or short
boundaries a priori. The simple instance involving intensity gradient and length information
mentioned above possesses this property. This invariance can be broken, for example by the
addition of an area term, but this becomes a modelling decision, rather than an uncontrolled
feature of the energy itself as it is for linear energies.

In [12], a different algorithm was proposed for the optimization of this form of energy.
This ‘minimum mean weight cycle’ algorithm [15] was not general, optimizing only a small
subset of the possible instances of the energy, and in addition, had no sensible continuum
interpretation. This introduced an undesirable dependence on the discretization, which
manifested itself in unfortunate behaviour with respect to boundary length. In this paper, we
introduce a different polynomial-time algorithm, the ‘minimum ratio weight cycle’ algorithm,
that globally optimizes any instance of the energy. The new algorithm [19, 22] outperforms
the old one not only in its much broader range of applicability, but even in its time and space
requirements in the instances that the old algorithm could solve. We describe the previous
algorithm here also, both for completeness and because it is extremely parallelizable, raising
the prospect of a simple hardware implementation. Neither of these algorithms requires
initialization. They find the global minimum of the discrete version of the energy functional,
so that to within the accuracies allowed by the discretization they minimize the functional
itself. No choice of seeds or initial contour is used.

The paper is laid out as follows. In the next section, we discuss related work. In section 3,
we describe the form of energy functional, and some of its properties. We give some examples
of the types of information that it can incorporate. In section 4 we discuss the graph algo-
rithms that we use to optimize such energies, and their relation to the continuous problem.
In section 5 we describe some specific models of regions and boundaries, and demonstrate
the results of applying these models to images.

2. Related work

Early work on contour-based grouping includes Parent and Zucker’s [25] work using re-
laxation methods, Sha’ashua and Ullman’s [27] work on saliency networks, and Guy and
Medioni’s [10] work using voting schemes. Elder and Zucker [8] developed a method for
finding closed contours using chains of tangent vectors, but they drastically prune the search
space to render tractable the exponential problem they have set themselves. This work is
based on edge maps rather than intensity gradients as such.

Mumford first pointed out the connection between minimal energy curves (“elastica”)
and stochastic processes [24], and discussed their application to computer vision. Williams,
Thornber and Mahamud [21, 30] and Williams and Jacobs [31] find closed curves in edge
maps using stochastic completion fields closely related to elastica. There is a close connection
between their work and the minimum mean weight energy discussed in section 4, but this has
not been fully explored. Closest to our work however, because it uses an energy optimization
criterion explicitly, is the work on active contours and deformable models. The seminal work
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in this area is Kass et al. [16] and Blake and Zisserman [3], and much subsequent work
follows this both in the form of the energy functionals used, and in algorithmic techniques.
Typical energies include data terms that favour contours passing through points of high
intensity gradient magnitude, and regularizing terms that tend to keep the contour short or
smooth. The energies used are linear however, and hence cannot exhibit scale invariance in
the sense discussed in section 3.3. Linearity also means that theoretical obstacles prevent
the global minimum from being both non-trivial and computable in polynomial time, so that
gradient descent or a variant of it is normally used to find local minima starting from an
initial position chosen by the user.

Another body of work applies dynamic programming techniques to minimize contour en-
ergies in an effort to reach global solutions, an approach that can be interpreted in terms
of shortest paths in directed acyclic graphs. Amini et al. [2] use dynamic programming as
part of a gradient descent procedure. Montanari [23] uses dynamic programming to find
the minimum energy path between given end-points. Geiger et al. [9] use initialization with
a series of points, and a choice of window around those points, to delineate the space of
contours considered. In all cases initialization and restricted regions of the image are used
to limit the space of contours over which the optimization proceeds, and in addition many of
the algorithms find only local minima, or approximations to global minima over this limited
set of contours. Globally minimum closed contours are not found.

The interesting paper of Zhu and Yuille [32] uses both region and boundary information
within an energy optimization model for image segmentation. The work brings active con-
tour and region growing techniques together within a Bayesian framework. The paper uses
Green’s theorem to compute the functional derivatives used in the gradient descent algo-
rithms that form the core of the method. Because of the use of gradient descent however,
the algorithm can find only local minima of the energy functional used, even in the case
where only a single region is sought.

The paper by Cox, Rao, and Zhong [4] is particularly related to our work. They use a ratio
energy also, of a generalised area to a generalised length, and use a “pinned ratio” algorithm
to optimise it. This algorithm finds the optimal closed curve through a given point, and by
trying successively all possible points in the image domain, the globally optimal curve can be
found. Unfortunately, by its nature the algorithm is constrained to consider generalised areas,
or in other words the integrals of positive functions on the interior of the region. This is very
restrictive: in particular it means that the combination of region and boundary information
that is possible in our model is not possible in theirs. In addition, the algorithm is rather
unwieldy. Because of the way the algorithm works however, it is possible to restrict attention
to those curves passing through a fixed point, which is not possible with the minimum ratio
weight cycle algorithm described here.

Shi and Malik [28] use a generalized eigenvalue method to find normalized cuts of an
image graph, and use this to partition the image by iterating the algorithm. The algorithm
is a sophisticated and general clustering method, and as such, although Leung and Malik
[20] extend the work interestingly by incorporating weak contour continuity information
into the region-based model, does not seem amenable to the natural inclusion of boundary
information. The big advantage of the normalised cut over previous minimum cut methods
however is the normalisation, which re-scales the cut weight to remove trivial solutions
associated with the removal of one or very few vertices. The denominator in our energy
plays a very similar role to the cut normalization.
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3. Theoretical framework

We will formulate the model in a continuous way, as this renders the properties of the
energy functional manifest. In practice of course, the measured image function is defined on a
graph G embedded in the image domain D ⊂ R2, G being typically, although not necessarily,
a rectangular lattice. Hence the algorithms we use to optimize the energy functional will
be formulated in the discrete domain, the continuous objects being approximated by their
discrete counterparts: the continuous boundaries will be approximated by cycles in G for
example. The choice to use a continuous model is justified by several considerations. The
light intensity incident on the detector is described using continuous domains, and in fact this
is the problem that we would really like to solve, hence the continual increase in the resolution
of detectors. Second, the relation between the continuous and discrete formulations lies in
the properties of the detector, and the use of both ways of phrasing the problem means that
we can in principle study the effect of the detector on the algorithm. Third, the continuous
formulation reveals the geometric structure and invariances of the model much more clearly
than does a discrete formulation, which by its nature depends on the discretization used.

The form of energy functional we will describe is defined on the space of boundaries in
D. By a boundary, denoted ∂R, we mean a closed curve in the image domain, under some
restrictions that are important technically to ensure that all the expressions we will use are
well-defined, but which are not that illuminating otherwise. We will allow self-intersections
and repeated segments in the curves in principle but, as we discuss in section 4.1, such curves
cannot be minimizers of the energy we will define except in degenerate cases. We will allow
isolated corners in the curves where the tangent vector is not well-defined, because cycles
in G have precisely this behaviour when viewed as continuous closed curves in D. We also
include multiple closed curves, but again these only appear as minimizers of the energy in
degenerate cases. If the situation were degenerate in one of the above ways, we would detect
all the degenerate minima.

A boundary will be represented as an injection γ of the circle S1 into D obeying the
above restrictions. For any given boundary ∂R, there is an equivalence class of maps γ that
correspond to it. They are related by bijections ε of the circle to itself obeying appropriate
restrictions, so that γ is changed to γε. Any energy functional should be invariant to such
changes, because it is ∂R and not γ that contains the geometric information in which we are
interested. If the functional is not invariant to such changes, the results will depend on an
arbitrary choice made by the user or the algorithm.

The boundaries we use are oriented, or in other words they have a direction. The image
domain D is also oriented, meaning that we can define the normal to any vector in the
image domain (and in particular to the tangent vector of the boundary) as the rotation of
the vector by π/2 in the direction of the orientation, for example clockwise. We denote the
rotation of a vector v in this way v⊥.

Having set up the background, we now write down the form of energy functional, and then
explain the various terms in it.

E[∂R] =
N [∂R]

D[∂R]
=

∫
S1 dt γ′(t)⊥ · v(γ(t))∫
S1 dt |γ′(t)| g(γ(t))

(1)

We have already defined ∂R and γ, but note that γ(t) is a point in D, and therefore stands
for two coordinate values. t is an arbitrary parameterization of S1, and a prime denotes a
derivative with respect to t. γ′(t) is thus the (un-normalised) tangent vector to the boundary,
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and γ′(t)⊥ is the (un-normalised) normal vector, oriented according to the orientation of the
boundary. (We write the boundary integral this way rather than directly in terms of γ′(t)
because it simplifies the discussion of Green’s theorem below, and gives a more intuitive
picture of the energy.) We give the image domain the usual Euclidean metric, here denoted
·. The quantities v and g are where all the modelling takes place. The quantity v is any
vector field on D, while g is any positive function. Both v and g will typically be derived in
some way from the data, or will encode some geometric constraint. Note that N is dependent
on the orientation of the boundary, changing sign under a change of orientation, whereas D
is not. This means that values of E come in positive/negative pairs corresponding to the
two orientations of a closed curve, and hence that minimizing E is the same as maximizing
its absolute value. This is often a clearer way to view the functional.

Intuitively, the numerator N [∂R] measures the net ‘flow’ of some quantity v into or out of
the region R that is the boundary’s interior. In the most obvious case, which we use often,
v = ∇I, the intensity gradient. Then N [∂R] measures the flow of intensity into or out of the
region, which is to say the total amount of intensity gradient normal to the boundary. The
denominator is positive by construction, and hence can be viewed as a generalised measure
of length. In this paper, we will almost always take the function g to be identically equal to
1, meaning that D[∂R] is just the Euclidean length. The meaning of the energy in equation 1
is then just the average flow per unit length into or out of the region.

It is easy to see that E is invariant to the choice of representative γ of a boundary ∂R:
replacement of γ by γε leads to an identical expression after a change of variables in the
integration. Equation 1 has other interesting invariances also, which we discuss in section 3.3.

3.1. From region to boundary and back. Equation 1 appears to deal solely with data
on the boundary, but in practice we would also like to be able to say something about the
region that is the interior of the boundary. For example, it would be useful to find the
boundary that, in addition to having high intensity gradients along its length, contained a
region of highly homogeneous intensity, or a particular texture. The remarkable thing is that
equation 1 can incorporate such information, while still preserving the algorithmic property
that it can be globally minimized in polynomial time. This is possible through the use of
Green’s theorem:

∫
S1

dt γ′(t)⊥ · v(γ(t)) = ±
∫

R

∇ · v(x, y) dx dy(2)

This relates the integral of a vector field v over the boundary γ of a region R to an integral
of its divergence ∇ · v over the interior. The sign on the right-hand side depends on the
relative orientation of the boundary and the image domain. As it stands, equation 2 does
not appear that useful, since it enables us to convert boundary data to region data rather
than the reverse. However, since the image domain is a simply-connected subset of the plane,
the reverse is also true. That is, given any function f on the image domain, the integral of
this function over a region can always be converted to the integral of an associated vector
field vf over the boundary of the region. This is clearly possible if, for any function f , we
can find a vector field vf such that ∇ · vf = f . This is easily demonstrated. In components
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with respect to rectangular coordinates x and y on D:

vf
x(x, y) =

1

2

∫ x

a

f(x′, y) dx′(3)

vf
y(x, y) =

1

2

∫ y

b

f(x, y′) dy′

It is trivial to see that ∇ · vf = f . There is a lot of freedom in choosing vf . The choice of
a and b does not affect the divergence, and neither does the replacement of the factors of 1

2
by two numbers p and q such that p + q = 1. The addition to vx

f of a function depending
solely on y and the addition to vy

f of a function depending solely on x also have no effect.
These are special cases of the fact that one can add to v any divergence-free vector field u
and still obtain the same function when the divergence is taken. This property is discussed
further in section 3.3. Note that the vector field is easy to evaluate algorithmically. One
simply traverses the image once along each row and once along each column, adding up the
values of f as one goes along. For maximum efficiency, the y-component can be eliminated
entirely by choosing p = 1 and q = 0, thus making only one image traversal necessary.

In the special but important case that f is produced by the convolution of some kernel
with the intensity, the vector field is even easier to derive. We have that

f(x, y) =

∫
D

K(x, y, x′, y′) I(x′, y′) dx′ dy′(4)

Then we have for the case of vf
x:

vf
x(x, y) =

1

2

∫ x

a

[∫
D

K(x′, y, x′′, y′′) I(x′′, y′′) dx′′ dy′′
]

dx′(5)

=
1

2

∫
D

[∫ x

a

K(x′, y, x′′, y′′) dx′
]

I(x′′, y′′) dx′′ dy′′

=
1

2

∫
D

Kx(x, y, x′′, y′′) I(x′′, y′′) dx′′ dy′′

and similarly for vf
y. Thus if the kernel is well enough behaved to allow the exchange of

order of integration, then rather than having to perform the integrations in equations 3 for
each image that we process (although this is scarcely time-consuming), we can integrate the
kernel once and for all.

The above discussion means that any measure of region optimality expressible as an inte-
gral over the region of some function can be re-expressed as an integral over its boundary.
Given some measure of boundary optimality u and some measure of region optimality f , we
can simply form the vector field u+vf and use it in equation 1. Thus equation 1 can include
region information of this type as easily as it can boundary information such as intensity
gradients. Note however that as soon as we start forming linear combinations of different
sources of information, we introduce parameters into the model representing the relative
weight to be given to these different sources.

3.2. Examples of vector fields and functions. To clarify these abstract ideas, we give
some examples of functions that can be built from the image intensity and used in equation 1.
We give the examples in terms of functions integrated over the region, and where analytical
evaluation of equations 3 is possible, we also indicate the corresponding boundary vector
field. We denote convolution by ∗.
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The most obvious possibility is to choose f = I. In this case the model is looking for
high intensity regions. It will find bright spots such as specular reflections, as well as large
regions of high intensity. Similarly, f = e−I would look for dark regions, and in general f
can be designed to look for regions of any particular intensity.

Another obvious choice is f = 1. In this case, the region integral is measuring the area.
The vector field vf is then just given by vf

x(x, y) = 1
2
x, vf

y(x, y) = 1
2
y. Including this term

then favours regions of larger area.
Another useful choice, which we have already mentioned, is f = ∇2I. This corresponds

to a vector field vf = ∇I. The form of the numerator of equation 1 means that boundaries
that lie on high intensity gradients in the image and that are oriented so that the gradient
is normal to the boundary will be favoured by this choice. Compared to the standard active
contour energy, this choice has the advantage of favouring gradients normal to the boundary.
In some situations however, this choice of f does not perform as we would wish. Note that
it favours boundaries in which the gradient is consistently oriented towards the interior or
the exterior of the region. It does not therefore model contrast-reversing boundaries well.
We describe below a way to deal with this eventuality via a different choice for the function
g.

Choosing f to be a monotonically-decreasing function of the intensity gradient magnitude,
for example f = e−|∇I|, will favour regions that have a homogeneous intensity across them.

We now describe a general form for f that can be used for example with texture descriptors
and in many other cases. Suppose we have some map T that, given an image I, generates

a map from the image domain to some feature space F : D
T [I]→ F . We assume F to be a

metric space with metric ρ. Now given a point (or in general a subset) s ∈ F , we can define
a function on D as

f(x, y) = M(ρ(T [I](x, y), s))(6)

where M is a monotonically-decreasing function of its argument. The value f(x, y) is thus
large when the feature value at point (x, y), T [I](x, y), is close to s. The integral of f over a
region will thus be large if the region has feature values close to s. The previous examples of
functions f are all special cases of this general formulation. Typical examples of F are one
or another colour space, or the space of values taken by a set of filters designed to describe
texture.

Combining various terms in the numerator raises an issue beyond the addition of param-
eters. An easy way to illustrate it is to take as an example the combination f = ∇2I + 1.
This means that f favours regions with high intensity gradient normal to the boundary and
with larger area. The situation is not quite that simple though, due to the relation between
the orientation of the image domain and the orientation of the boundary. For a particular
fixed choice for the orientation of D, such a function will favour larger area regions with
the gradient oriented outwards (‘a black blob on a white background’), while the function
f̄ = ∇2I − 1 will favour larger area regions with the gradient oriented inwards (‘a white
blob on a black background’). If our modelling requirements are that these two situations
be considered equivalent, then both signs must be used and the energies compared.

We have not discussed so far any possibilities for the function g appearing in the denom-
inator of equation 1. For most of the paper we assume that g ≡ 1, so that D[∂R] is the
Euclidean length. However, as mentioned above, to deal with contrast-reversing boundaries
it is necessary to alter g. By putting g = |∇I|−1 (or some other decreasing function), we
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favour boundaries passing through points of high intensity gradient. We still have to choose a
term for the numerator, and here the most neutral choice is the area, f = 1. We thus favour
larger area regions with a great deal of gradient on the boundary, regardless of orientation.

3.3. Invariances. Equation 1 has some interesting invariances beyond the necessity that it
be invariant to the choice of boundary representative γ. Adding to v another vector field u,
we can use Green’s theorem to convert the integral of u over the boundary to an integral of
its divergence ∇ · u over the interior R. Then if ∇ · u = 0, N [∂R] will be unchanged by the
addition of u to v. If v = ∇I, then the addition to I of another function i will not affect the
boundary integral if ∇·∇i = ∇2i = 0. So changing the image by the addition of a harmonic
function will not change the output of the model. Note that this includes the addition to
the intensity of a constant, or of a linear function.

As mentioned in section 1, the energy E may possess a ‘scale invariance’. By this we do
not refer to invariance to changes in the size of the image (or equivalently to changes in the
metric on the image domain), but to the relation between the energy of a boundary and
a scaled version of itself. Clearly this depends on the data that enters the energy via the
quantities v and g. If γ is an arbitrary boundary, and µγ is a scaled version of it, then the
change from γ to µγ introduces a factor of µ into both numerator and denominator from the
terms in γ′. These factors therefore cancel. If the vector field and function are unchanged,
which is to say that

v(γ(t)) = v(µγ(t))(7)

g(γ(t)) = g(µγ(t))

for all t, then the energy of the original and scaled boundaries will be the same. Thus the
energy is scale-invariant if the data under the boundary is the same, which is as one would
expect. Note that this is close to the idea of invariance to object size. In an image, the
boundaries of a large car will exhibit almost the same behaviour as those of a small car. In
the case that v = ∇I and g ≡ 1, the above equations are satisfied if the gradient of the
intensity is the same on the scaled boundary as on the original, which justifies calling this
and similar instances of the energy scale-invariant. On the other hand, it is clear that if v
is the integral of a constant function, v ∝ (x, y), so that its integral around the boundary
gives the area of the interior, then equation 7 cannot be satisfied.

The latter behaviour does not represent a problem. The point of any invariance is that it
should be obeyed in the absence of any modelling decision to the contrary. The introduction
of an area term certainly constitutes a decision to break the invariance. The difference be-
tween the energy in equation 1 and standard linear active contour energies is that equation 1
can be free of bias towards small or large boundaries if desired. Linear energies cannot, so
that breaking the invariance is unavoidable. The question that remains then is: what are
the vector fields and functions that constitute a decision to violate scale invariance?

This is a hard question to answer in the abstract. The vector field v and function g can
in principle be arbitrarily complicated non-local functions v[I] and g[I] of the intensity. We
then have that v maintains scale invariance if for all γ, µ and u, there is an image I such
that v[I](µγ(t)) = u(t), where u is the data vector field on the original boundary γ. A
similar equation holds for g. In short, those vector fields violate scale invariance that cannot
be made to satisfy equation 7, in the sense that if they did there would be no image from
which they could have been derived. Various special cases can be analysed, such as when
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v is derived from I by a linear map, but space requirements prevent full discussion of these
here.

4. Algorithmics

After the long discussion of the theoretical properties of the model, we now turn to the
algorithms that will enable us to solve it. The first algorithm applies in a restricted set of
instances, but has the advantage of being extremely parallelizable. The second is completely
general, applying to any energy functional of the form of equation 1, and on serial machines
is much faster than the first algorithm.1 Neither algorithm requires initialization, meaning
that given an image, the algorithm outputs a boundary without the user having to interfere
by selecting a starting contour or a number of seeds. This does not mean that it is impossible
for the user to control the algorithm: he can select regions of the image in which to search,
for example an annulus around an interesting boundary, or he could add potentials to the
data that are incorporated into the model and that direct the algorithm.

In subsection 4.1, we describe the discrete problem that we will solve. Then, in sections 4.2
and 4.3, we describe the two algorithms that solve the problem and compare them. In
subsection 4.4 we describe the relation of the discrete problem to the continuous one.

4.1. Problem. Given a graph G = 〈V, E〉 (we denote |V | by n, and |E| by m), and two
maps λ : E → Z and τ : E → Z+, we define the ‘ratio weight’ W (C) of a set of edges C ⊂ E
as

(8) W (C) =

∑
e∈C λ(e)∑
e∈C τ(e)

Note that the weights are integral: this represents almost no restriction in practice. Note
also that the co-domain of τ is the positive integers. This corresponds to the form of the
integrand in D[∂R] in equation 1, which is positive by definition. When τ is constant, we
call W the ‘mean weight.’ Let C be the set of cycles in G. The problem is then to find
W ∗ = minC∈C W (C) and C∗ = arg minC∈C W (C). We will call this problem A.

There is another problem, problem B, where we wish to find the minimum ‘total weight’
cycle with weight given by a single sum like the numerator of equation 8. Problem B is the
discrete equivalent of the minimization problems arising from linear active contour energies,
and comparison of the two problems in both the continuous and discrete domains shows how
the properties of the energy in equation 1 arise. In the continuous domain, note the following
points. If the linear energy is never negative, for example if it is orientation-independent like
the denominator of equation 1, then attempts to minimize it will simply lead to the trivial
solution of an infinitely small boundary with zero energy. If the linear energy is orientation-
dependent, like the numerator in equation 1, then there will be a boundary with negative
energy unless all boundaries have zero energy. This means that the energy is unbounded
below, because a boundary can wrap around a negative energy boundary an infinite number
of times. Since the addition of any other boundary to this boundary will not change the
infinitely negative energy, the problem is ill-posed. Thus the global solutions in these two
cases are trivial.

The same conclusions arise in the discrete case, but here there is a third possibility: an en-
ergy that is neither orientation-independent (an undirected graph) nor orientation-dependent
(a directed graph in which opposing edges have weights of opposite sign). Although there

1There is also a linear programming approach to the problem, described by Dantzig, Blatner and Rao [5].
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is no way to conclude that there is a negative cycle in this more general case, a problem
still arises. Minimizing cycles may self-intersect or even self-overlap, neither of which is very
satisfactory. One can solve these problems simply by deciding to minimize over non-self-
intersecting boundaries only. Unfortunately, although theoretically possible, this restriction
creates an NP-hard problem. This is because a polynomial solution of problem B restricted
to simple cycles would allow a solution of the Hamiltonian cycle problem in polynomial time.

Linear energies thus lead us to an impasse: either the global solution is trivial or the prob-
lem is essentially insoluble. How does the energy in equation 1 avoid these problems? Note
first that the ‘wrap-around’ problem does not arise, since an infinitely-wrapped boundary
will have exactly the same energy as a singly wrapped one. The same phenomenon also
takes care of self-intersecting and self-overlapping boundaries/cycles. Self-intersections are
eliminated as follows. Suppose for specificity that the boundary is a figure of eight. If the
loops have different energies under equation 1 when considered as separate boundaries, then
one of them will have a lower energy than the other. In that case, the combined figure of
eight boundary will have a higher energy than the loop with lower energy, and therefore can-
not be a global minimum. If the loops happen to have exactly the same energy considered
separately, then the situation is degenerate, and the algorithm we will describe would find
both loops of the figure of eight. They can then trivially be separated as equivalent global
minima. The case of self-overlaps is a little more subtle, but in the orientation-dependent
case at hand things simplify, and we can eliminate self-overlaps from consideration via the
following argument. If a boundary self-overlaps, then the overlapping section will add noth-
ing to the numerator of equation 1, but will increase the denominator, thereby bringing down
the absolute value of the energy. Such boundaries cannot therefore be minima of equation 1
since removal of the overlapping section would produce a boundary with a lower energy.

We now proceed to describe the algorithms.

4.2. Minimum Mean Weight Algorithm. This algorithm does not solve the general
instance of problem A. The restriction is that the denominator weights τ should all be equal,
or in other words that we are solving the ‘minimum mean weight cycle’ problem rather than
the more general ‘minimum ratio weight cycle’ problem. Up to an irrelevant factor, τ ≡ 1,
so the denominator is simply counting the edges in the set C. This discrete problem does
not have a continuous counterpart, dependent as it is on the discretization. The algorithm
is due to Richard Karp, and we refer the reader to the original paper for proofs [15].

First, fix an arbitrary start vertex s ∈ V and define the function Fk taking each vertex
v ∈ V to the minimum of the total weight (defined using λ) over the set of paths to v from
s that consist of exactly k ≥ 0 edges. If no path of k edges exists, then define the weight
to be ∞. Then it can be shown that the weight W ∗ of the minimum mean weight cycle is
given by

(9) W ∗ = min
v∈V

max
k∈[0..(n−1)]

{
Fn(v)− Fk(v)

n− k

}
.

Fk(v) can be computed using the recurrence

Fk(v) = min
(u,v)∈E

Fk−1(u) + λ(u, v)(10)

F0(s) = 0

F0(v) = ∞ , ∀v 6= s.
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n Table (4 x 4 x 16) is 
filled layer by layer. 

n Each entry looks only 
at nearest neighbour 
entries in layer below.

n Synchronous parallel 
updating possible.

Table entry contains 
weight of minimum 
weight path of 
four edges from 
source to here.

Minimum path 
extracted using 
predecessor 
pointers.

Source s

Figure 1. The figure illustrates the dynamic programming that takes place
in the solution of the minimum mean weight cycle problem. An empty table
is constructed, with the graph vertices as base, and with height equal to the
number of vertices. The lowest level is then filled in using the second and third
of equations 10. Subsequent levels are filled using the first of equations 10.
By recording the minimizing vertices at each level, the minimum mean weight
cycles can be found as described in the text. The intuition is that as the paths
grow up the table, they start to wrap around low weight cycles. Equation 9
then ‘cuts off’ the beginning of the path from the source to the cycle, and
evaluates the mean weight of the cycle that is left.

The computation of F for all k ∈ [0..(n−1)] can be performed using dynamic programming
in time O(nm). This process is illustrated in figure 1. A table with the graph vertices as a
base, and with height equal to the number of vertices in the graph, is filled layer by layer
using equations 10. The minimum weight paths can be tracked simultaneously by recording,
each time it is used, which vertex minimizes the first of equations 10. This data then gives
a predecessor graph for each minimizing path from s.

Having filled the table, we can compute W ∗ from Fk(v) by finding the maxima and min-
imum in equation 9 in a further O(n2) time, leading to an overall computation time of
O(nm). Clearly the table requires O(n2) of memory. The cycle itself can be extracted by
recording the minimizing v and k in equation 9, and then finding a cycle of length n− k in
the minimum weight path from s to v. The latter can be done simply by back-tracking in
the predecessor graph from v.

Since Fk(v) only depends on Fk−1(u) for u in the neighbourhood of v, a network arranged
in levels of constant k could compute the values of Fk in parallel from the values of Fk−1 in
O(1) time. To fill the whole table containing Fk(v) for all k and v would thus take O(n)
time. The minimization would take the same time, and is also easily implementable as part
of the network. It is easy to envisage columns of this sort being arranged behind a detector
and producing at the ‘top’ of the table the extracted region.
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4.3. Minimum Ratio Weight Algorithm. The minimum mean weight cycle algorithm
described above has the drawback that it cannot deal with edge weights τ other than the
trivial case in which τ ≡ 1. This has the consequence that it cannot deal with arbitrary
functions g in D[∂R] in equation 1. Indeed, it cannot deal even with the case of the function
g ≡ 1, since this corresponds to τ(e) = Euclidean length of e. Instead it uses a discrete
measure: the number of edges in the discretized version of the boundary. This lack of
generality and dependence on the discretization, coupled with the unfortunate properties
of an edge count as a measure of distance, render the algorithm unsatisfactory for many
purposes. The minimum ratio weight cycle algorithm described in this subsection works for
arbitrary τ : E → Z+, and hence deals with arbitrary functions g in D[∂R]. It also requires
considerably less memory resources than the minimum mean weight cycle algorithm. The
main consequence of this parsimony with memory is increased speed. Instead of the execution
times of a few minutes found for Karp’s algorithm, we find execution times on single images
of a few seconds (typically less than five seconds on a 256 × 256 image) for the minimum
ratio weight algorithm.The algorithm has the added advantage that degenerate minima of
the energy 1 can be identified simultaneously.

The algorithm was first described by Lawler [19], and since then has been much generalized
by Nimrod Meggido [22]. It relies on the following, interesting observation. We can define

a new, parameterized edge weight E
wt→ Q : wt(e) = λ(e) − tτ(e), where t ∈ Q. We use the

same symbol w for the weight of a set of edges (defined by summation). Then the solution,
t∗, of wt(C

∗
t ) = 0, where C∗

t is the solution to problem B with weights wt, is equal to the
minimum ratio weight W ∗ in problem A, and the minimizing cycle C∗

t∗ of problem B is equal
to C∗ for problem A. The simple proof is given in appendix A.

The problem is thus reduced to finding t∗, or in other words the value of t such that the
minimum total weight cycle using wt has zero weight. This in turn can be found by finding
the largest value of t such that G weighted by wt has no negative cycle. Although there are a
number of approaches, including binary search [19], and a more sophisticated approach using
parametric edge weights [22], we find in practice that the fastest method is simply linear
search. The algorithm is shown in figure 2. We assume that the object G corresponding to
the graph G contains the edge weights λ and τ , and so only needs t to compute wt. The
function call existsNegativeCycle(G,t,X) returns true if a negative cycle exists in graph
G with weights wt, and sets X equal to its ratio weight. It returns false if there is no negative
cycle. The function call findZeroCycle(G,t) returns the (one or more) zero weight cycles
in the graph G with weights wt. Appendix A contains details of the negative and zero cycle
detection algorithms that we use.

To see how this works, note that if t > t∗, the graph G using the weights wt will have a
negative cycle. We therefore start with a known upper bound t0 on t∗. We apply a negative
cycle detection algorithm with edge weights wt0 . If we do not find a negative cycle then
there is necessarily a zero weight cycle, and by the proof in the appendix we are done:
t0 = t∗ = W ∗. The zero weight cycle C∗

t0 is a solution C∗ to problem A (as are any other zero
weight cycles—hence we can detect degenerate minima). On the other hand, if a negative
cycle C is detected, then t0 is too large. Since wt0(C) < 0, we have that t0 > W (C) ≥ t∗.
We therefore replace t0 by t1 = W (C). The search continues in this fashion until there is no
negative cycle, at which point there must be a zero cycle C∗

t∗ with ratio weight W ∗ = t∗ and
C∗ = C∗

t∗ .
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t = t0; // t0 is a known upper bound on t*

while (existsNegativeCycle(G,t,X))

t = X;

return findZeroCycle(G,t);

Figure 2. Pseudo-code for the Minimum Ratio Weight Cycle Algorithm.

Note that because the weights λ and τ are integral, t∗ is rational, as already stated. This
enables a pseudo-polynomial bound to be placed on the search time in the following way. It is
easy to see that because of the integrality of the weights, upper and lower bounds on W ∗ are
given by ±λ0, where λ0 = max {λ(e) : e ∈ E}. The minimum weight difference between two
distinct ratio weights can similarly be proved to be 1

τ2
0
, where τ0 = max {τ(e) : e ∈ E}. Thus

the maximum number of applications of the negative cycle detection algorithm is O(τ 2
0 λ0).

Since the asymptotic complexity of negative cycle detection is O(mn) for the algorithm we
use, the pseudo-polynomial bound follows. In practice, the negative cycle detection never
executes to completion and the time bound is never saturated. The algorithm requires O(m)
space, much less than Karp’s algorithm. Further details of the time and space bounds are
to be found in appendix A.

There are also close to linear time negative cycle detection algorithms for planar graphs
[17]. These would allow improved performance in the case of single images, but we prefer
to describe the general case here since it generalises to higher dimensions, the application of
which to stereo and motion is described in [11].

Note that the way the algorithm works shows what was claimed in section 1, that the
energy in equation 1 is equivalent (as far as global minima go) to a linear energy of the form
N [∂R] − βD[∂R], but with β chosen automatically to be equal to the global minimum of
equation 1. The parameter is thus a complicated functional of the image.

4.4. Application. In order to solve the continuous problem of finding the minimum of
equation 1, we must show how it is related to the discrete problem described in section 4.1.

To do this, we embed a graph G in the image domain. The edges in the graph now
correspond to line segments in the image domain, and cycles in the graph correspond to
boundaries in the image domain of the type described at the beginning of section 3. If we
denote the integrands in N [∂R] and D[∂R] by n and d respectively, we can define weights
λ and τ for each edge e by integrating n and d along the line segment corresponding to e.
Because N [∂R] and D[∂R] are both linear functionals on the space of boundaries, their values
on a boundary ∂R in D corresponding to a cycle C in G are given by the sums over the edges
in C of λ and τ . If we restrict our attention to the boundaries in D that correspond to cycles
in G, then there is an exact correspondence between the continuous energy of equation 1
and the discrete ratio weight of equation 8. We can therefore exactly solve the continuous
problem on this restricted space of boundaries. If the graph is embedded densely enough in
D, this in its turn will be an approximation to the solution of the continuous minimization
problem over the full space of boundaries in the image domain. This is a heuristic statement:
the characterization of the accuracy of this approximation is a difficult problem for which
we do not have a solution. This is connected to the nature of the detector used to acquire
the image, as well as to the properties of the continuous signal itself.
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Gradient vector
(a) (b) (c)

Figure 3. (a) For each pixel we compute the gradient vector. (b) The graph
has a vertex for each pixel and eight outgoing edges for each vertex (except at
the boundary.) (c) The edge weight is calculated by taking a cross product of
the gradient vector and the edge vector.

In practice, we choose the graph to have as vertices the pixels in the image, and as out
edges the eight neighbours of each pixel. This is shown in part (b) of figure 3. We then must
evaluate λ and τ for each edge. This is done as follows. Given an edge e, we have the in- (i)
and out- (o) vertices (pixels), viewed as points in D ⊂ R2. The tangent vector along each
edge is simply o− i. We define v and e on each edge as the average of their values at i and
o. This corresponds to replacing v and g by linear approximations between pixels and then
integrating n and d. This gives us all the data we need to evaluate λ and τ . Note that this
construction does not depend on the details of v or g: it can be carried out for any energy
in the form of equation 1.

5. Demonstrations

5.1. Intensity gradient and area. For the first set of experiments, we chose f = ∇2I±β,
where β is a constant. As discussed above, the Laplacian gives a boundary term vf = ∇I,
which favours boundaries with a high normal component of intensity gradient, while the
second term favours larger areas. Its purpose is to eliminate very small regions. We took
β = 10/3. We took the function g in the denominator of equation 1 to be identically equal
to 1, thus measuring the boundary length. The energy in equation 1 then becomes

(11) E[∂R] =

∫
S1 dt γ′(t)⊥ · ∇I(γ(t))∫

S1 dt |γ′(t)|
+

∫
S1 dt γ′(t)⊥ · uβ(γ(t))∫

S1 dt |γ′(t)|
,

where uβ = (1
2
βx, 1

2
βy) is the vector field obtained by integrating the constant function

f(x, y) = β according to equation 3.
To calculate the first term of the numerator in equation 11, we did the following. At each

vertex/pixel, we computed the discrete version B of the gradient vector field ∇I by taking
a Gaussian derivative on a scale of the order of a pixel:

B = ∇G ∗ I(12)

Following the general prescription of the last section, we computed the numerator edge
weight for an edge with in-vertex i and out-vertex o as the signed magnitude of the cross
product of the vector o − i with the average of the gradients at o and i: 1

2
(B(o) + B(i)).

The cross product produces the same effect as rotating the tangent vector by π/2 and then



16 Ian H. Jermyn and Hiroshi Ishikawa

taking the dot product. The edge weight for the denominator we took to be its geometric
length |o− i|1/2, corresponding to our choice of g ≡ 1. This is illustrated in figure 3.

We applied the algorithm explained in section 4.3 several times to each image. After each
iteration, we removed from the graph those vertices through which the previous solution had
passed. This has the effect of eliminating a great deal of confusing repetition in which the
algorithm finds boundaries that are nearly but not quite the same. In this way a series of
regions of increasing energy was extracted. (Although this procedure does not necessarily
disconnect the graph, it has much the same effect, meaning that overlapping regions are
unlikely to be found. An alternative is to remove the edges in the cycle but not the vertices.
This allows overlapping regions, while still tending to eliminate near repetitions.) The results
are shown in figure 4. The numbers indicate the order in which the regions were found.2

For the size of images used here, detection of one contour generally takes a few seconds to
a minute on a 933MHz Pentium III computer. It uses about 15 Megabytes of memory for a
256× 256 image.

The model is biased towards larger areas, but some small areas are still found. This is
because they are ‘spikes’ in the intensity function. With a smaller value of β, more small
areas are found, but the larger regions displayed are still among the first few discovered. The
appearance of small regions for small values of β is not a defect of the model. It is the result
of using a scale-invariant theory. As discussed in section 3.3, there is no reason a priori to
prefer large regions to small. Only the task at hand can determine which is more important,
and hence this should be a modeling decision rather than an unavoidable property of the
energy.

5.2. Contrast-reversing boundaries. The energy used in the previous subsection favours
boundaries for which the intensity gradient is oriented consistently inwards or outwards
along its length. This means that it will not find a contrast-reversing boundary. In order
to illustrate that the model can also deal with the case of contrast-reversing boundaries, we
use a different energy functional, described in section 3.2:

(13) E[∂R] =

∫
S1 dt γ′(t)⊥ · uβ(γ(t))∫

S1 dt |γ′(t)| |∇I(γ(t))|−1
.

The numerator now consists only of the area term. The denominator in turn has the role
of detecting boundaries passing through high intensity gradient points in the image. The
results of applying the two energy functionals to a synthetic contrast-reversing boundary are
shown in figure 5. This energy also works on real images. Some results are shown in figure 6.

5.3. Curves that intersect the image domain boundary. Since the algorithm detects
closed curves, it cannot detect a curve that intersects the image domain boundary. However,

2We show multiple regions out of interest, rather than because we believe that the algorithm is useful
for image domain partition. We view the current model more as a base for the development of more
sophisticated region modelling techniques. Nevertheless the question arises as to how many regions one
should find in this way. We regard this question as ill-posed. If the algorithm were to claim to be finding
the regions corresponding to some semantic entity, for example human beings, then there would be a well-
defined way in which it would be right or wrong to find a certain number of regions. Clearly no such
claim, or rather no remotely successful such claim, can be made for the algorithm. In the absence of such
a semantic interpretation, the question of number of regions has no testable answer. These considerations
apply to almost all, if not all segmentation and region identification algorithms, and not merely the one
under discussion.
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Figure 4. The result of applying the energy functional equation 11. (a) A
256 × 256 pixel image. Three regions are shown. (b) A 200 × 134 pixel image.
Shown are two least energy regions. (c) A 124 × 166 pixel image. The best
region is shown.

there is a simple remedy to this problem. We add to the graph a special vertex and connect
it to every vertex corresponding to an image domain boundary pixel. We introduce edges in
both directions, and give each edge zero λ-weight and a τ -weight of 1. This has the effect of
connecting any pair of image domain boundary pixels by two edges that have little effect on
the functional. A curve that intersects the image domain boundary can now be described as
a boundary consisting of the portion of the curve in the image domain, plus the two edges
that join the points of intersection with the image domain boundary. The result of using
this graph with the gradient energy of equation 11 is shown in figure 7. There is a caveat
though. In continuous terms, this procedure corresponds to changing the topology of the
image domain into a sphere by identifying all points on its boundary. The result is that not
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(b)(a) (c)

Figure 5. (a) A synthetic contrast-reversing boundary. (b) The result of
applying the energy functional equation 11. (c) The result of applying the
energy functional equation 13. The region found is shown in grey.

all functions can be integrated globally to give a vector field. Specifically, the area term does
not work with this topology. Thus, the energy functional used for this experiment is only
the first term of equation 11, which is defined as a vector field a priori.

6. Summary

While the method we have presented is a powerful one, it has some limitations. Neither
algorithm is ‘interactive’, in the sense that one can move the solution to where one would
like it to be: this is a property of any algorithm that finds a global optimum. It is trivial
however to restrict the search to parts of the image domain, and even to introduce potentials,
similar to the ‘volcanoes’ used in the original active contour paper [16], to direct the search.
If run-time interactivity is desired, then it is easy enough to sacrifice global optimality to
interactivity by using an algorithmic approach more akin to gradient descent. None of the
desirable theoretical properties of equation 1 would be lost. However, we view the energy
as a foundation on which more sophisticated models of regions can be built, so that global
optimality has the advantage of being fully automatic and of giving a clear picture of the
significance of the results for the image as a whole.

One limitation of the method is that it cannot detect multiply-connected regions, for ex-
ample annuli, except in degenerate cases. How serious a limitation this is depends again
on the uses to which one sees the method being put. Segmentation algorithms may require
multiply-connected regions, since they are not looking for isolated objects but a global par-
tition, although in fact they are usually powerless to control things one way or the other.
Specific objects in images however generally occupy simply-connected regions (completions
are included here), and if they do not, what is usually needed is rather a self-intersecting
boundary (think of the silhouette of a human being with his hands on his hips). This is be-
cause the usual reason that objects occupy multiply-connected regions in images is because
they are the projections of volumes.

To summarize: the model we have described is one of few where the ability to find the
global optimum does not restrict the range of modelling possibilities available. The energy
allows the use of arbitrary (first-order) region and boundary information, while still being
globally optimizable in polynomial time for any choice of this information using the same
graph algorithm. Other theoretical properties of the model are good, allowing control over
the scaling of the energy with respect to boundary size, if desired eliminating the uncontrolled



Globally Optimal Regions and Boundaries 19

(a)

(b)

Figure 6. The results of applying the energy functional equation 13 to real
images. (a) A 256 × 256 pixel image. Note that the extracted boundary
is contrast reversing, i.e., for the left-hand-side boundary of the crater, the
inside is lighter, while for the right hand side the inside is darker. (b) The
same energy can also detect a non-contrast-reversing boundary (176 × 256
pixel image).

bias towards small or large boundaries present in linear active contour models. The algo-
rithms themselves are fast and elegant, and special cases that allow improved performance
are known. We are currently investigating further modelling possibilities of the energy.

Acknowledgements. The authors wish to thank the Instituto de Matemática Pura e Aplicada
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Figure 7. A 176 × 256 pixel image. A curve that intersects the image do-
main boundary is detected by using equation 11 and a special vertex that is
connected to all image domain boundary vertices.

Appendix A. Algorithmic Details

The claim in section 4.3 about the relation between the minimum ratio weight cycle
problem and a related minimum weight cycle problem is proved as follows.

Proof. Suppose t∗ is the solution to wt(C
∗
t ), where C∗

t is the minimum total weight cycle
for the weight wt. Then we have by definition that λ(C∗

t∗) − t∗τ(C∗
t∗) = 0, and hence that

t∗ =
λ(C∗

t∗ )

τ(C∗
t∗ )

. The claim is that t∗ is the minimum ratio weight cycle for W (C) = λ(C)
τ(C)

, and that

therefore C∗
t∗ is a minimizing cycle. Suppose this were not the case. Then there must exist a

cycle C such that t = λ(C)
τ(C)

< t∗. This however would mean that wt∗(C) = λ(C)− t∗τ(C) < 0

or in other words that wt∗(C) < wt∗(C
∗
t∗), contradicting the assumed minimality of C∗

t∗ .

For the reverse argument, suppose that t∗ is the minimum ratio weight for W (C) = λ(C)
τ(C)

and that C∗ is a minimizing cycle. Then by definition, t∗ = λ(C∗)
τ(C∗)

, or in other words,

wt∗(C
∗) = λ(C∗)− t∗τ(C∗) = 0. Now the claim is that C∗ is a minimum total weight cycle

for weight wt∗ , C∗
t∗ , and that its weight is zero: wt∗(C

∗) = 0. Suppose this were not the
case. Then there must exist a cycle C such that wt∗(C) < wt∗(C

∗) = 0. This however would

mean that λ(C) − t∗τ(C) < 0, or in other words that W (C) = λ(C)
τ(C)

< t∗, contradicting the

assumed minimality of t∗. �

The pseudo-polynomial bound on the execution time quoted in section 4.3 comes about
as follows.

Proof. We define λ and τ on sets of edges by summation. Let τ0 be the maximum value of
τ over E. Let C1 and C2 be two cycles with distinct ratios. Then∣∣∣∣λ(C1)

τ(C1)
− λ(C2)

τ(C2)

∣∣∣∣ 6= 0
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or ∣∣∣∣λ(C1)τ(C2)− λ(C2)τ(C1)

τ(C1)τ(C2)

∣∣∣∣ 6= 0(14)

Since the left hand side of equation 14 is non-zero, and all the data are integer, the numerator
must be at least 1 in absolute value. The denominator is at most τ 2

0 . Thus on each iteration,
the value of t must decrease by at least 1

τ2
0
.

Let λ0 be the maximum absolute value of λ over E. Then again because the data is integral,
the minimum ratio weight must lie in the interval [−λ0, λ0]. The algorithm therefore cannot
iterate more than 2λ0τ

2
0 times. Since on each iteration, the negative cycle detection algorithm

has time bound O(mn), the pseudo-polynomial bound on the time is O(λ0τ
2
0 mn). In our

case, the edge weights do not depend on the size of the graph, since they are related to the
maximum image function value, which is independent of image size. The pseudo-polynomial
bound is therefore polynomial in our case. �

The negative cycle detection algorithm used in the minimum ratio weight cycle algorithm
was a dequeue implementation of a modified label-correcting algorithm for computing the
shortest path lengths from a source vertex s to all v ∈ V . The generic label-correcting
algorithm maintains labels d for each vertex. These are upper bounds on the shortest path
lengths. It selects edges e = 〈u, v〉 one at a time and updates them if d(v) > d(u) + w(e),
where w is the edge weight function. The modified label-correcting algorithm instead removes
vertices u from a list and updates the vertices v for which 〈u, v〉 ∈ E. If v is not in the list, it is
added. Both these algorithms are pseudo-polynomial [1]. There is an O(mn) implementation
of the generic label-correcting algorithm that uses a queue as the list structure, adding
updated vertices to the back. The dequeue implementation of the modified label-correcting
algorithm is pseudo-polynomial but the fastest in practice, especially on sparse graphs such
as lattices. In this version, the list is maintained as a dequeue. The vertices are always
removed from the front of the queue but may be added to the front or the back. A vertex
is added to the front if it has been in the list earlier. Otherwise it is added to the back.
The idea is that if v has been seen before, it will have updated some other vertices, its
out-neighbours. If it is updated again, it is best to update these other vertices immediately,
rather than first remove them from the list with old (and probably out of date) values, and
update their out-neighbours, only to have to update those same out-neighbours a second
time when v is eventually removed from the list. The time bound on this implementation is
O(min(nmwmax, m2n)), where wmax is the maximum absolute value of w over E. Experiments
show that in practice this implementation is approximately linear time.

There are several ways of detecting negative cycles while running these algorithms. If
the label of a vertex slips below −nwmax, then a negative cycle exists. One can also check
whether the predecessor graph from each vertex has a cycle. If it does, this cycle must be
negative, since no positive cycle can form part of the predecessor graph. This takes O(n)
time, and so does not slow down the algorithm if it is done every αn distance updates.

Finally, when the algorithm terminates, the way to find the zero length cycles is simply to
adjust the edge weight for each edge e = 〈u, v〉 to w̃(〈u, v〉) = w(e)+d(v)−d(u), where d are
the shortest path lengths computed by the label-correcting algorithm. Now a new graph G0

is formed by removing all edges except those with w̃(e) = 0, along with disconnected vertices.
Now cycles in G0 correspond to zero length cycles in G with edge weights w̃. Finding cycles
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in G0 is accomplished in the standard depth-first labelling fashion, looking for a back edge.
In this way, it is possible to find degenerate minima.

There are even more efficient negative cycle detection algorithms based on a transformation
to a matching problem [1]. When wmax is polynomial in n, these offer a time-bound of
O(n1/2m log(nwmax)). There is also the linear time algorithm for planar graphs mentioned
in the text [17].
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