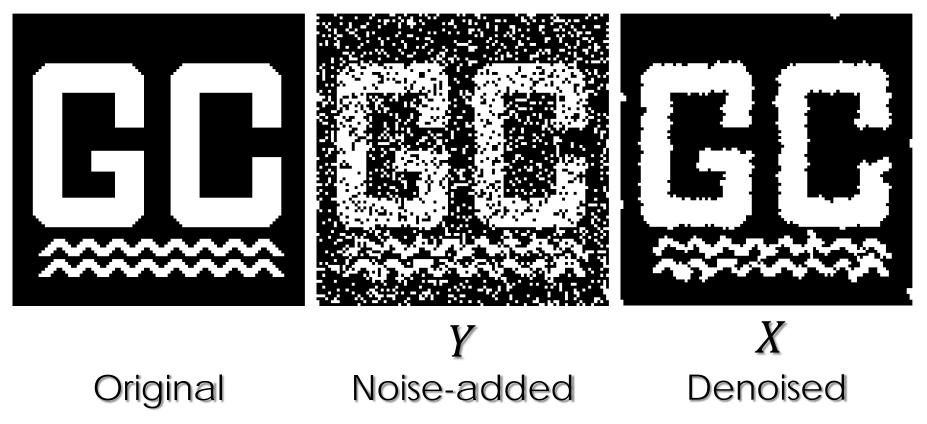
ACCV2014 Area Chairs Workshop Sep. 3, 2014 Nanyang Technological University, Singapore

Higher-order Graph Cuts

Hiroshi Ishikawa Department of Computer Science & Engineering Waseda University

Labeling problem



- Assign a label to each pixel
 - Pixel $v \in V \rightarrow \text{Label } X_v \in L$

Energy minimization

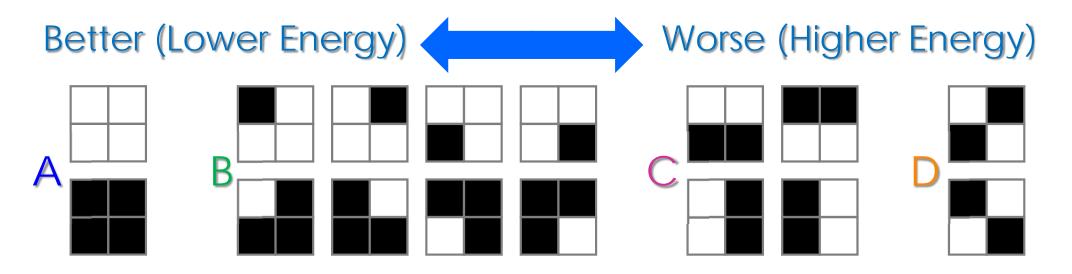


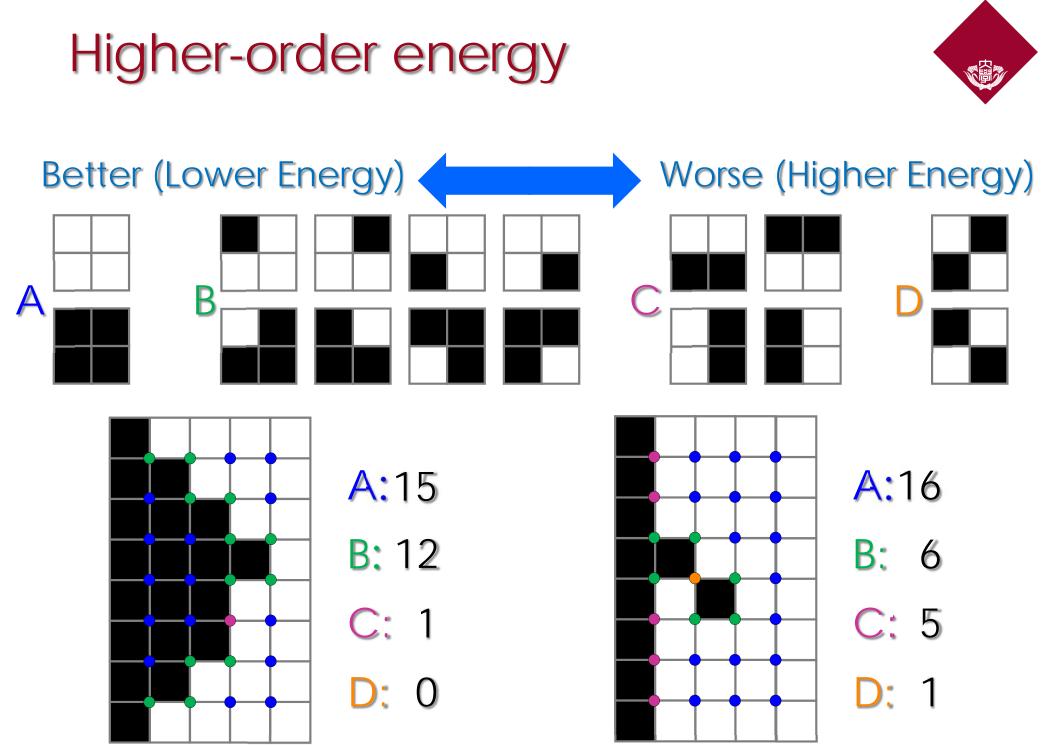
First-order (pairwise) energy

Good (Low Energy) Bad (High Energy) 12 Bad 12 Bad 40 Good 40 Good

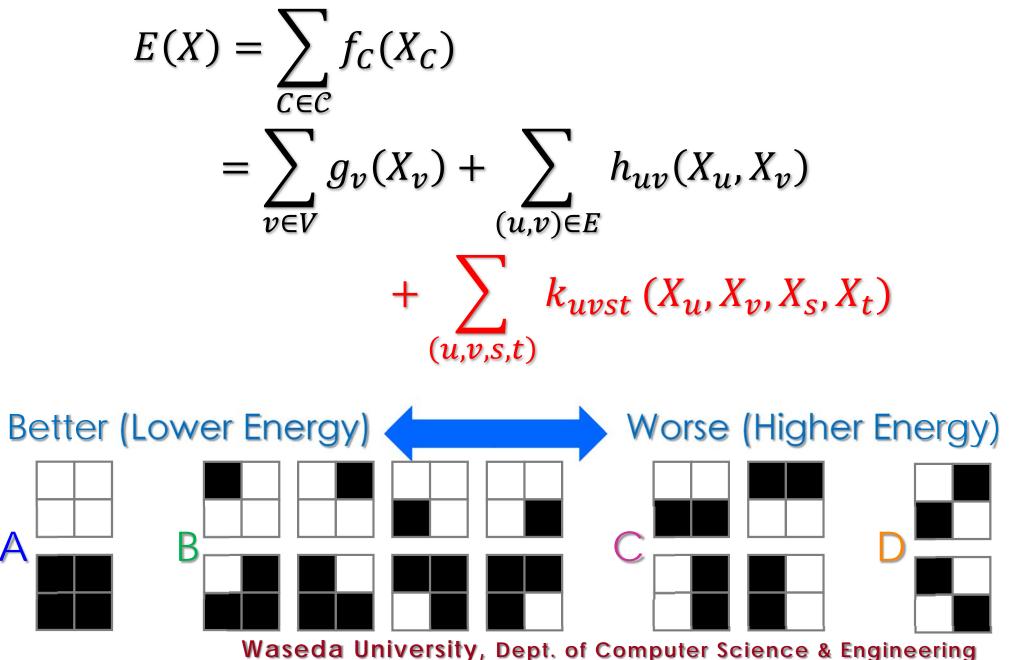
Higher-order energy

Good (Low Energy) Bad (High Energy)





Waseda University, Dept. of Computer Science & Engineering



Functions of binary variables

- 《圖》
- Pseudo-Boolean function (PBF)
 - Function of binary (0 or 1) variables
 - Can always write it uniquely as a polynomial
- One variable x: $E_0(1-x) + E_1x$
- Two variables x, y: $E_{00}(1-x)(12y) + E_{01}(1-x)y + E_{10}x(12y) + E_{11}xy$
- Three variables x, y, z:

 $E_{000}(1-x)(1-y)(1-z) + E_{001}(1-x)(1-y)z + \dots + E_{111}xyz$

• n^{th} order binary MRF = $(n + 1)^{\text{th}}$ degree PBF

Convert any higher-order binary energy

$$E(X) = E(X_1, \dots, X_n) = \sum_{C \in \mathscr{C}} f_C(X_C)$$

into an equivalent first-order energy

$$\tilde{E}(X) = \tilde{E}(X_1, \dots, X_n, \dots, X_m) = \sum g_v(X_v) + \sum h_{uv}(X_u, X_v)$$

Adds variables

• More than 2 labels \rightarrow Fusion moves

Ishikawa CVPR 2009, PAMI 2011

New!

Convert many higher-order binary energies

$$E(X) = E(X_1, \dots, X_n) = \sum_{C \in \mathscr{C}} f_C(X_C)$$

into an equivalent first-order energy

$$\tilde{E}(X) = \tilde{E}(X_1, \dots, X_n) \qquad) = \sum g_v(X_v) + \sum h_{uv}(X_u, X_v)$$

- Without adding variables
- How? Ishikawa CVPR 2014

Example: a cubic term

• $\varphi(x, y, z)$: cubic (3rd degree)

 $\varphi(0,0,0) = \mathbf{a}, \varphi(1,0,0) = \mathbf{b}, \varphi(0,1,0) = \mathbf{c}, \varphi(1,1,0) = \mathbf{d}, \\ \varphi(0,0,1) = \mathbf{e}, \varphi(1,0,1) = \mathbf{f}, \varphi(0,1,1) = \mathbf{g}, \varphi(1,1,1) = \mathbf{h}$

•
$$\varphi(x, y, z) = a(1-x)(1-y)(1-z) + bx(1-y)(1-z)$$

+ $c(1-x)y(1-z) + dxy(1-z) + e(1-x)(1-y)z$
+ $fx(1-y)z + g(1-x)yz + hxyz$

- xyz coefficient: s = -a + b + c d + e f g + h
- Define new function:

 $\varphi'(x, y, z) = \begin{cases} \varphi(x, y, z) & when (x, y, z) \neq (0, 0, 0) \\ \varphi(0, 0, 0) + s & when (x, y, z) = (0, 0, 0) \end{cases}$

i.e., value is added s only when (x, y, z) = (0, 0, 0)

Example: a cubic term

の間で

Define new function:

 $\varphi'(x, y, z) = \begin{cases} \varphi(x, y, z) & when (x, y, z) \neq (0, 0, 0) \\ \varphi(0, 0, 0) + s & when (x, y, z) = (0, 0, 0) \end{cases}$

i.e., value is added s only when (x, y, z) = (0,0,0)

- New xyz coefficient (replace a with a + s): s' = -(a + s) + b + c - d + e - f - g + h = s - s = 0
- So φ' is now quadratic (2nd degree)
- Similarly, we can reduce the degree by changing one of the 8 possible values
- But φ and φ' are different functions!

When can we do this?

 $\varphi'(0,0,0) = a + s, \varphi'(1,0,0) = b, \varphi'(0,1,0) = c, \varphi'(1,1,0) = d,$ $\varphi'(0,0,1) = e, \qquad \varphi'(1,0,1) = f, \varphi'(0,1,1) = g, \varphi'(1,1,1) = h$

- Different only when (x, y, z) = (0,0,0)
- Suppose φ is a potential in $E(X) = \sum f_C(X_C)$
 - x, y, z are three of the variables in X
- If
 - *s* > 0, and
 - For minimizer X of E(X), $(x, y, z) \neq (0,0,0)$,

then, we can replace φ with φ' without changing the minimizer

ELC

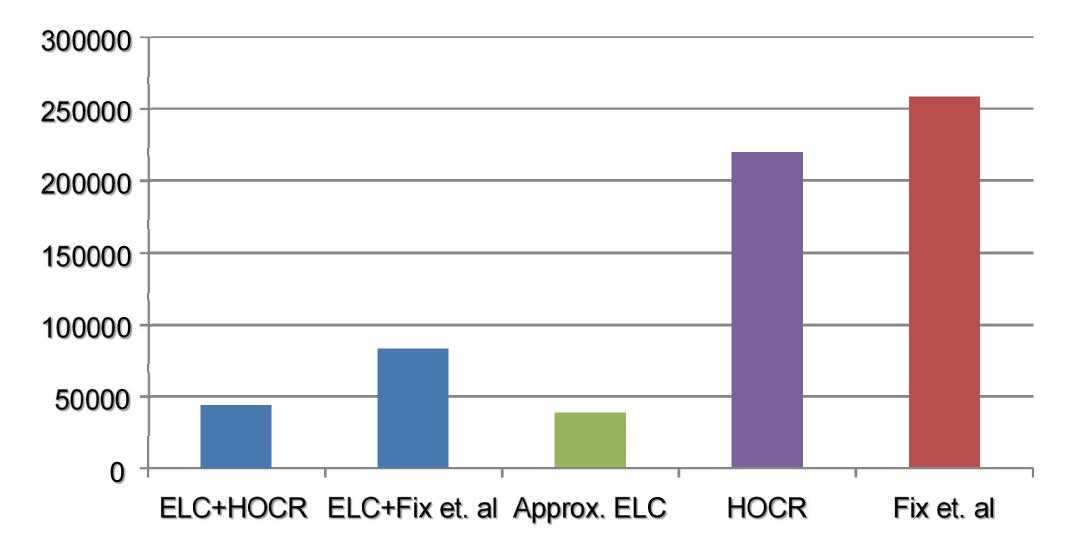
- Excludable Local Configuration (ELC)
 - A (usually) locally-testable sufficient condition for local configuration (x, y, z) to be not part of global minimizer
 - "Excludable as a part of global minimizer"
- ELC may not exist
- May take time to find
- Approximation
 - Just use the local configuration (x, y, z) with the largest value φ(x, y, z)

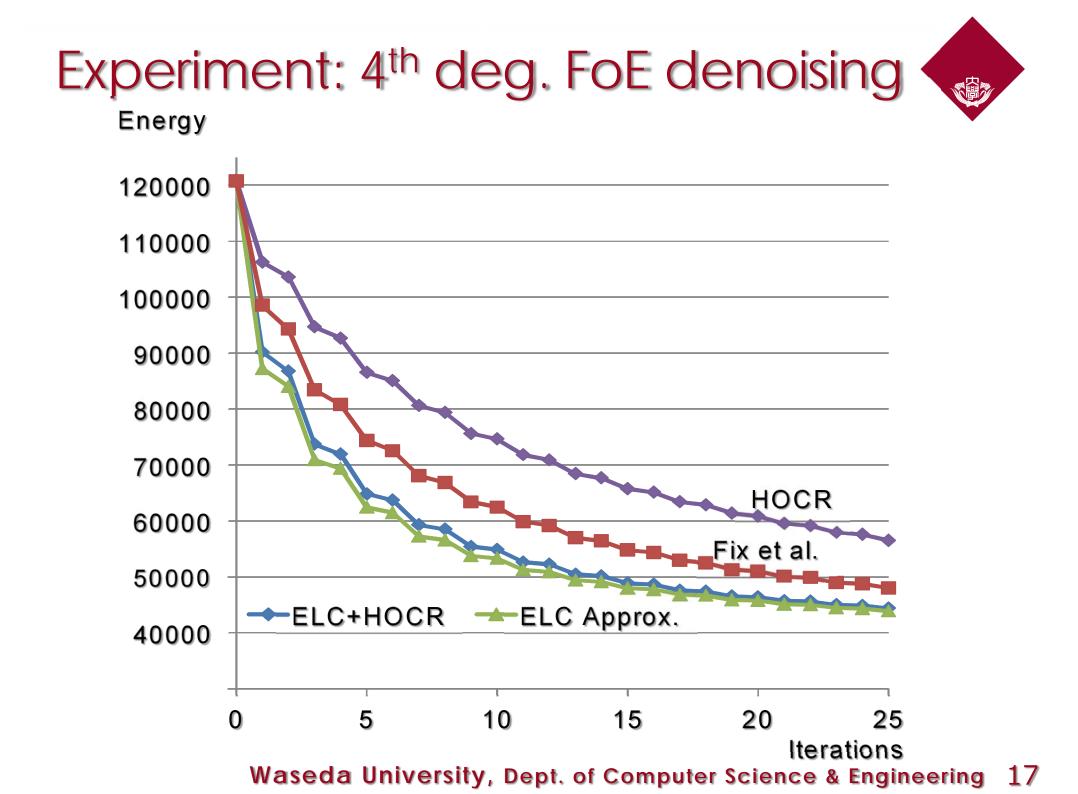
Original

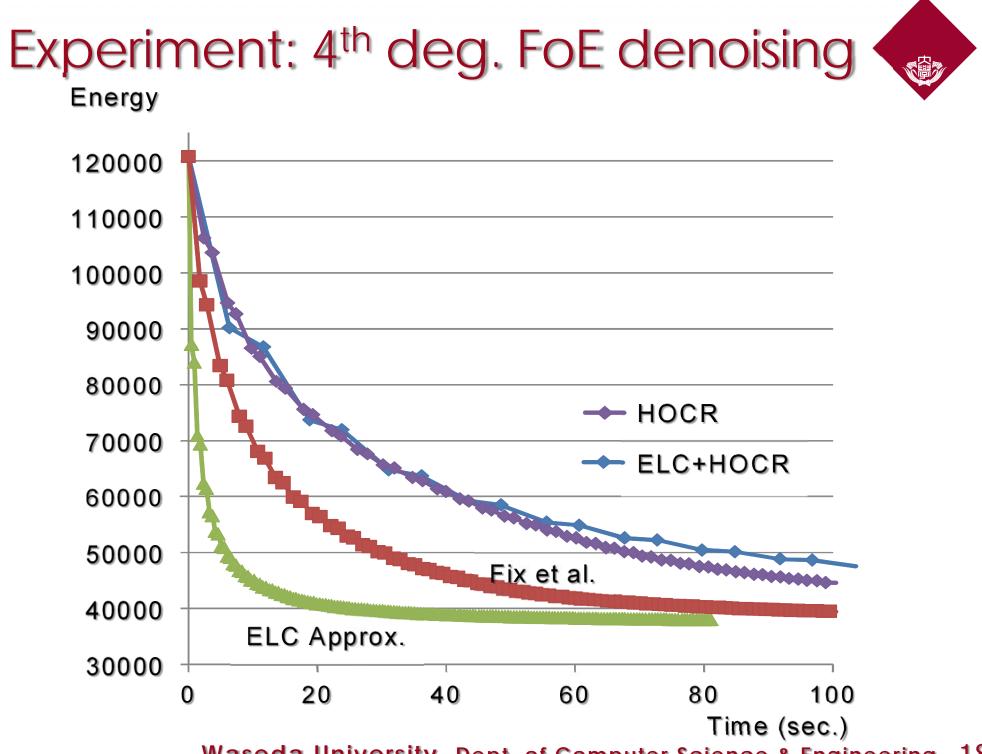
Noise added

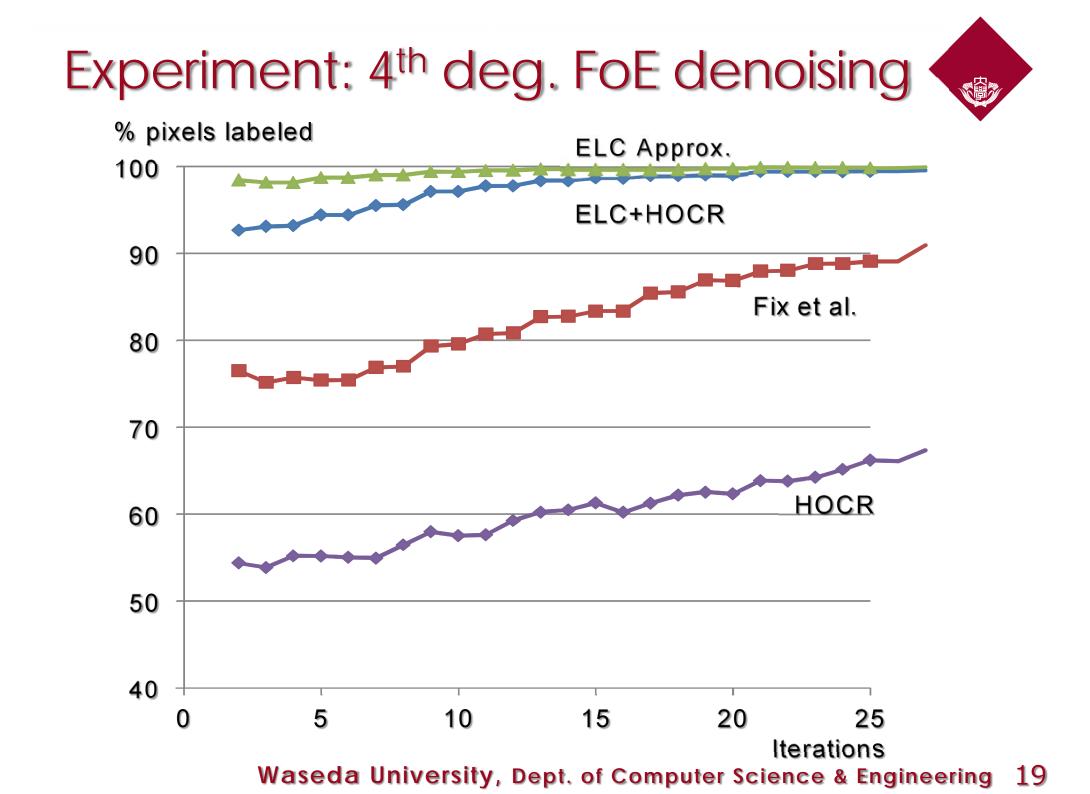
4th degree

Number of variables after conversion









Experiment: 4th deg. FoE denoising

- ELC exists:
 - 3rd degree: 96.12%
 - 4th degree: 99.60%
- Approximation:
 - Guessed configuration is in fact an ELC
 - 3rd degree: 88% of the time
 - 4th degree: 97% of the time
 - Even if it is not an ELC, it is not part of maximizer
 - 3rd degree: 99.98%
 - 4th degree: 99.997%
 - 99.99988% of (labeled) pixels correctly labeled Waseda University, Dept. of Computer Science & Engineering 20

Conclusion

- Higher-order energy minimization
 - Unary, Pairwise, Triple,
 - Binary labels: reduce to first order
 - Then use graph cuts
 - Multiple labels: use Fusion Move
- Reducing to first order
 - Before: add variables
 - New: no variables added
 - Faster
 - Much less memory
- Code available: http://www.f.waseda.jp/hfs/software.html Waseda University, Dept. of Computer Science & Engineering 21